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BaPb1−xBixO3 is a superconductor, with transition temperature Tc = 11 K, whose parent compound BaBiO3

possesses a charge ordering phase and perovskite crystal structure reminiscent of the cuprates. The lack of
magnetism simplifies the BaPb1−xBixO3 phase diagram, making this system an ideal platform for contrasting high-
Tc systems with isotropic superconductors. Here we use high-quality epitaxial thin films and magnetotransport to
demonstrate superconducting fluctuations that extend well beyond Tc. For the thickest films (thickness above
∼100 nm) this region extends to ∼27 K, well above the bulk Tc and remarkably close to the higher Tc of
Ba1−xKxBiO3 (Tc = 31 K). We drive the system through a superconductor-insulator transition by decreasing
thickness and find the observed Tc correlates strongly with disorder. This material manifests strong fluctuations
across a wide range of thicknesses, temperatures, and disorder presenting new opportunities for understanding
the precursor of superconductivity near the 2D-3D dimensionality crossover.
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In contrast to the layered cuprate superconductors,
BaPb1−xBixO3 (BPBO, Tc = 11 K) and Ba1−xKxBiO3

(BKBO, Tc = 31 K) are isotropic and nonmagnetic; however,
there are still interesting similarities [1,2]. The bismuthates are
complex oxides with oxygen octahedra similar to the cuprates,
and the parent insulating BaBiO3 (BBO) possesses a compet-
ing phase, a charge density wave (CDW), which is suppressed
for superconducting compositions. The study of the simpler,
conventional bismuthate may lead to a deeper understanding of
the role of CDW physics in the more complicated cuprates. The
cuprate phase diagram is characterized by numerous electronic
and magnetic phases and the properties are strongly influenced
by disorder [3]. In thin conventional superconductors, disorder
can lead to a pseudogap reminiscent of the high-Tc cuprates,
suggesting a possible connection between the layered cuprate
structure and dimensionally confined conventional supercon-
ductors [4]. In superconducting BPBO single crystals, Luna
et al. [5] found a reduction in the density of states consistent
with a disorder-driven metal-insulator transition and predicted
a disorder-free Tc of 17 K in the strong-coupling limit and 52 K
in the weak-coupling limit for x = 0.25.

Here we demonstrate an extended region of positive magne-
toresistance in epitaxial thin films of BaPb0.75Bi0.25O3 that is
well described by superconducting fluctuations. This fluctua-
tion regime persists for the thickest films that are well within the
3D regime, consistent with the high disorder found in our films.
Restricting film thickness causes a superconductor-to-insulator
transition (SIT) that correlates with disorder. Although our
results are consistent with the disorder levels found in bulk
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single crystals [5], we find that the critical thickness for
superconductivity depends on extrinsic factors related to the
poor lattice matching of BPBO with common perovskite
substrates.

The high-quality epitaxial growth of BBO-based materials
presents additional challenges since B(K,Pb)BO exhibits one
of the largest lattice parameters (apc = 4.26–4.36 Å) among
the ABO3 perovskites. There is little understanding of how
the large lattice mismatch, >10% on typical commercial
perovskite substrates such as SrTiO3 (STO), impacts the
structural and electronic properties of these materials. Reports
in the literature demonstrate epitaxial growth on STO [6–8],
MgO (a = 4.21 Å) [9–11], or by using buffer layers [12]. We
use recently developed LaLuO3 (LLO, apc = 4.187 Å) single
crystals [13] as a substrate to grow BPBO (x = 0.25,apc =
4.29 Å) and BBO films, demonstrating that reduction of the
lattice mismatch from ∼10.1% (STO) to ∼2.7% (LLO) im-
proves crystallinity, surface roughness, and superconducting
transitions.

Epitaxial films of optimally doped x = 0.25 BPBO were
grown using 90◦ off-axis rf-magnetron sputtering on (001)
STO and (110) LLO substrates (see Supplemental Material
[29] for detailed methods). Thick films grown on both sub-
strates exhibit a room temperature resistivity of 0.8 m� cm,
the lowest reported for BPBO with x = 0.25, and a slightly
negative dρ/dT typical for optimally doped BPBO, as seen
in Fig. 1 [7,14,15]. The thick films exhibit sharp transitions
with transition widths of 0.2 K (90%–10% of normal state)
and Tc (50% of normal state) of 10.9 K, comparable to
bulk single crystal [16] and polycrystalline ceramics [14],
and the highest reported for thin films [7]. We also find no
evidence of inhomogeneous transitions as seen in bulk single
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FIG. 1. Resistivity measurements from 300 K to 2 K. (a) Representative resistivity measurements for films on LLO and STO. For 4.4 nm
on LLO and 5.5 nm on STO, the dots are experimental data and the solid line is a fit to a variable range hopping model. (b) Transition region
for superconducting samples from (a). (c) Phase diagram of the BPBO system vs thickness for films on LLO (black circles) and STO (blue
squares). The shaded regions are guides to the eye.

crystals [16]. The quality of BPBO films is further demon-
strated in Figs. 2(a)–2(c) by the narrow ω-rocking curves,
presence of Kiessig fringes, and out-of-plane lattice constant
of 4.276 Å, in good agreement with the bulk value.

Decreasing the film thickness leads to higher resistivity,
more negative dρ/dT , depressed Tc, and broadened transitions
as shown in Figs. 1(a) and 1(b). The thinnest films on both LLO
and STO show insulating behavior well fitted by a 2D variable
range hopping model (T0 = 1070 K and 7.5 K, respectively)
over the entire temperature range [solid lines in Fig. 1(a)]. The
LLO films exhibit higher Tc when compared with films grown
on STO. Figure 1(c) shows the extracted Tc (50% of normal
state), showing a smaller critical thickness for films on LLO
(dc ∼ 5 nm) than those on STO (dc ∼ 5.5 nm).

Previous reports of BPBO polycrystalline films found sig-
nificant suppression of Tc already apparent at 200 nm, a much
larger thickness than the onset of Tc reduction in our epitaxial
films [17]. Grain boundaries in polycrystalline BPBO form

Josephson junctions [18,19], leading to reentrant behavior [20].
Our epitaxial films do not show reentrant behavior, and the
high crystalline quality evident in the rocking curves makes
the existence of a granular structure unlikely.

Disorder can be parametrized using the Mott-Ioffe-Regel
parameter, kF l, determined from the normal state resistivity
ρ and the Hall coefficient RH by using the free electron
formula kF l = (3π2)2/3h̄R

1/3
H /(ρe5/3), which describes the

limit of scattering in a system before localization occurs. In
our system we find strong correlation between kF l and Tc,
as shown in Fig. 3, with films on LLO showing higher kF l

for a given thickness. The disorder-induced superconductor-
insulator transition, controlled by a variety of parameters in-
cluding thickness, has been extensively studied in conventional
and high-temperature systems, with recent efforts focusing
on the quantum nature of the SIT; however, no complete
theoretical understanding exists for the variety of phenomena
experimentally observed [20,21].

-2.0 -1.9-2.0 -1.9
H (r.l.u.)

-2.0 -1.9
2.80

2.85

2.90

2.95

3.00

3.05

L
(r.

l.u
.)

-1.0 -0.9
2.5

2.6

2.7

2.8

2.9

3.0

3.1

-0.5 0.0 0.5

40 42 44 46

In
te

ns
ity

(a
rb

. u
ni

ts
)

2θ (deg)

10.9 nm LLO
12.7 nm STO
281 nm LLO
294 nm STO

-2 -1 0 1 2

0.20°

Δω (deg)

0.02°

0.02°
0.02°

(a) (b)

(c)

(d) (e) (f ) (g)

FIG. 2. X-ray diffraction characterization. (a) Representative out-of-plane 2θ -ω scans around the 002pc peak for thin (∼11 nm) and thick
(∼290 nm) BPBO films on STO and LLO. The corresponding rocking curves around the 002pc film peaks for (b) thin and (c) thick films with
the full width at half maximums indicated. Reciprocal space maps around the 103pc reflection for (d) a fully coherent 4.4 nm thick film on LLO,
as well bilayer relaxed films on LLO (e) 7.8 nm thick and (f) 281 nm thick and (g) fully relaxed 8.2 nm on STO. The inset cartoons show the
film structure for each space map.
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FIG. 3. Disorder and superconductivity. (a) Transition tempera-
ture vs the Mott-Ioffe-Regel parameter, kF l (extracted from room
temperature measurements), and (b) kF l vs thickness (the dashed lines
are guides for the eye). (c) Tc vs the sheet resistance at 20 K. The
dashed lines are fits to Finkel’stein’s model for a homogeneously
disordered superconductor. (d) Power-law scaling dependence of
thickness times transition temperature (d × Tc) versus RS based on
the phenomenological formula d × Tc = AR−B

S , where A and B are
fitting parameters [31].

For 2D homogeneously disordered films, Finkel’stein de-
veloped a model for Tc suppression from Coulomb interactions
assuming no change to the bulk electron gas properties with
changes to RS [22]. The data for both sets of films initially fitted
well Finkel’stein’s model, Fig. 3(c), indicating an increase

in the scattering time for films on LLO compared to STO;
however, the model breaks down for films close to the critical
thickness. Epitaxial films can experience thickness-dependent
strain relaxation, resulting in changes to material structure
and properties with decreasing thickness. We investigate the
strain state of our films using reciprocal space maps, shown in
Figs. 2(d)–2(g). On STO, BPBO grows relaxed, as reported by
other groups [23,24]. On LLO, we obtain coherent growth for
films up to ∼4.5 nm, with an abrupt relaxation at ∼4.5 nm that
forms a layered structure [see inset schema Figs. 2(d)–2(f)]
that remains present for the thickest films studied. Similar
relaxation behavior has been reported for other oxide epitaxial
systems [25–28] and occurs in undoped BaBiO3 films as shown
in supplemental Fig. 1 of Ref. [29]. The relaxed BPBO phase
on both substrates has lattice constants of apc = 4.29 Å and
cpc = 4.28 Å, in good agreement with bulk values from powder
diffraction [30]. Films on both substrates show variations
in the out-of-plane lattice parameter at low thicknesses, see
supplemental Fig. 2 in Ref. [29], indicating assumptions are
likely violated for the Finkel’stein model. Both sets of films
show a power-law relationship between d × Tc and RS , shown
in Fig. 3(d), an empirical observation found in many thin su-
perconducting systems that is not well understand theoretically
[31].

The x-ray diffraction in Fig. 2 reveals rocking curves with
higher diffuse backgrounds and reciprocal space maps with
broader in-plane components for all films grown on STO.
The mosaic spread seen in the broadening of rocking curves
and reciprocal space maps is indicative of a high dislocation
density [32,33]. Improving the film-substrate lattice match by
switching to LLO reduces the diffuse background, consistent
with a reduction in dislocations and mosaicity. Additionally,
surface and interface scattering become more important in
thinner films and atomic force microscopy consistently reveals
smoother surfaces for films grown on LLO, as shown in Fig. 4.
The smaller critical thickness for superconductivity for films

FIG. 4. Atomic force microscopy images. Surface topography images for (a) treated STO and (b) LLO, (c) 12.7 nm BPBO on STO,
(d) 10.9 nm on LLO, (e) 101 nm on STO, and (f) 96.5 nm on LLO.
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FIG. 5. Magnetoresistance measurements above Tc. Magnetoresistance at fixed temperatures for (a) insulating 5.5 nm on STO, (b)
superconducting 8.2 nm BPBO on STO, and (c) superconducting 7.8 nm BPBO on LLO. In (b) and (c) the markers are experimental data points
with the solid lines fits to superconducting fluctuations and weak localization in a 2D disordered system. (d) Representative magnetoresistance
vs temperature. (e) The MR inflection temperature T ∗ vs Tc (the dashed line is a guide for the eye).

on LLO is consistent with the reduced disorder in the higher
quality, smoother films [34–36].

Thin disordered superconductors routinely show evidence
of superconductivity above the measured Tc [20,37]. We
investigated the insulating-to-superconducting transition via
magnetotransport, revealing positive magnetoresistance (MR)
in all superconducting films well above Tc. Nonsuperconduct-
ing films (with thickness less than a critical thickness dc ∼
5–6 nm) show only negative magnetoresistance that increases
in magnitude as the temperature is lowered, as shown in
Fig. 5(a) for an insulating film on STO. Magnetoresistance
in the insulating phase of disordered superconductors can
show a variety of responses. For instance, positive magne-
toresistance reported in insulating samples is evidence of the
existence of localized superconductivity persisting beyond the
superconductor-insulator transition [38,39]. However, the ob-
servation of positive magnetoresistance in insulating samples is
not universal even within the same material system, suggesting
that localization can occur through different mechanisms of
disorder resulting in distinct insulator states [40–43].

In contrast to the insulating samples, superconducting films
show an extended region of positive magnetoresistance above
Tc that extends to a temperature T ∗ that is highly correlated
with Tc, as shown in Fig. 5(e), suggesting a strong link
between the positive MR and superconductivity [44–47]. In

superconductors, a positive magnetoresistance above Tc is
associated with the presence of superconducting fluctuations
and can arise from several different mechanisms [37]. For
thin ∼8 nm films, we fit our experimental MR data to models
for fluctuations and weak localization in 2D disordered sys-
tems, see the Supplemental Material [29], and find excellent
agreement in the region far above the transition and at low
fields, as shown in Figs. 5(b) and 5(c). We note that while we
used the readily available expressions for magnetoresistance
of a 2D film [37,48,49] and obtained excellent agreement
with experiment, far from Tc we expect a shortened coherence
length and that our films are likely in the 3D regime [50]. The
theory of fluctuations for 3D systems is incomplete with no
expressions for the field dependence for all terms available,
in part due to difficulty in preparing metallic systems with
high enough disorder for measurable fluctuations [51]. The
BPBO system exhibits measurable fluctuations across a wide
range of thicknesses and at temperatures easily accessed by
common He cryostats, allowing comparison with theory and
study of the crossover regime from 2D to 3D. Although we are
beyond the strict limits of 2D fluctuation theory, the correlation
between Tc and T ∗ [Fig. 5(e)] and the good fits of experi-
mental data strongly suggest the positive MR originates from
superconducting fluctuations. Weak antilocalization (WAL)
can also lead to positive MR in systems with strong spin-orbit
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coupling. Separation of the various terms that contribute to MR
is difficult, but we point out the strong correlation between Tc

and T ∗ [Fig. 5(e)], the power-law scaling of T ∗ in a manner
similar to Tc [Fig. 3(d)], and the smooth divergence of MR
as Tc is approached [Fig. 5(d)]. Further demonstration of the
presence of fluctuations is beyond the scope of the present
study but could be searched for in magnetic susceptibility or
other above-Tc phenomena [37].

We extracted T ∗ for each film by fixing field and sweeping
temperature, as shown in Fig. 5(d), resulting in the phase dia-
gram shown in Fig. 1(c). The existence of fluctuations far above
the observed Tc is expected for films approaching the critical
thickness for superconductivity [40]; however, surprisingly, the
thickest films (100–300 nm) show positive magnetoresistance
extending to ∼27 K [Fig. 5(d)], significantly higher than the
bulk transition Tc0 = 11 K. Clean, bulk superconductors are
expected to have only a very narrow temperature regime where
fluctuations manifest [37]. The superconducting coherence
length of BPBO is ∼8 nm and isotropic, placing these thick
films firmly in the 3D regime [14,52]. Measurements on single
crystals of BPBO reveal scaling consistent with a 2D material
[15] and transmission electron microscopy measurements
show some evidence of striped polymorph ordering on the
scale of the coherence length [53], suggesting nanostructuring
of the material could contribute to this phenomenon. We,
however, have no evidence of such stripes in our films,
and our measurements suggest a high level of disorder in
BPBO. The Mott-Ioffe-Regel parameter, kF l, extracted from
room temperature measurements for the thick films is ∼3–4,
consistent with bulk single crystal measurements [16,52], and
in the regime of a disordered material. This finding agrees
with tunneling measurements on bulk BPBO crystals that
show changes to the tunneling density of states arising from
disorder [5].

The role of disorder and superconducting fluctuations has
interested the community, in part due to the layered structure
of the high-Tc cuprates and nearby insulating phases that pro-
mote the presence of fluctuations. Similarly, thin conventional
superconductors exhibit strong fluctuations, proximity to a
superconductor-insulator transition, and evidence for a pseudo-
gap in the density of states, suggesting a connection between
thin conventional superconductors and the higher-Tc layered
materials [4]. Disordered NbN films exhibit magnetoresistance
inflection at temperatures close to the where the energy gap

from scanning tunneling spectroscopy vanishes [39]. There
is one report of a pseudogap in Ba0.67K0.33BiO3 [54] and
a pseudogap has been suggested for BPBO [55]; however,
experimentally the normal state properties are poorly explored
in BBO superconductors.

Although the physical origin of disorder in BPBO is as
of yet undetermined, there are several possibilities. Optical
and terahertz spectroscopy measurements hint at local CDW
fluctuations that could compete with superconductivity prior
to the onset of a semiconducting band gap from a long-range
CDW [56,57]. In BPBO there is also evidence that many
samples consist of two structural polymorphs, tetragonal and
orthorhombic, and that superconductivity is correlated with the
tetragonal volume fraction [30,58]. Our measured T ∗ of ∼27 K
in thick films is very close to the higher Tc of Ba1−xKxBiO3,
and in reasonable agreement with the prediction for disorder-
free BPBO from Luna et al. [5]. The similar temperature
scales of our T ∗, the disorder-free Tc prediction, and the
onset of CDW fluctuations strongly suggests a connection
of these phenomenon. Models of Tc suppression, such as
the Finkel’stein model, do not consider effects such as a
competing CDW phase. The surprisingly large temperature
range with measurable fluctuation effects is consistent with
BPBO possessing a significantly higher Tc that is obscured by
disorder.

Our work demonstrates a smaller critical thickness for films
grown on LLO; however the lattice mismatch is still large com-
pared to other perovskite heterostructures, preventing growth
of films thick enough to study epitaxial strain engineering
[59,60]. Further improvements in crystalline and interface
qualities are important for BBO heterostructures that could use
thin layers to control the CDW [23] or interface superconduct-
ing BPBO with the predicted topological insulating phase of
BBO [61]. Our results show how extrinsic contributions related
to material limitations play an important role in the ultrathin
limit, as well as reveal above-Tc phenomena in BPBO.
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TARGET PREPARATION

Targets of Ba(Pb1−xBix)yO3 were prepared from starting powders of Ba(NO3)2, PbO, and

Bi2O3, with excess Pb and Bi in order to compensate for the relatively high vapor pressures

of lead and bismuth oxides during sintering and growth. The starting powders were mixed in

a planetary mill with zirconia media and isopropyl alcohol then dried overnight. Calcination

was performed at 725◦ C for 24 hours in air followed by another planetary milling step. The

resulting powder appeared to be single-phase perovskite within the limits of laboratory XRD.

2” sputtering targets were formed in a uniaxial press. The green targets were covered top

and bottom with excess BPBO powder to limit Pb and Bi volatility then sintered at 850◦ C

for 1 hour in air. Excess Bi/Pb, y, was varied from 1 to 1.25, with films y = 1.08 and below

exhibiting poor stability and Bi/Pb deficiency as measured by RBS. Films with y = 1.20

and above showed depressed superconducting transition temperatures. We therefore selected

y = 1.13.

FILM GROWTH

STO substrates (CrysTec GmbH) with single termination were prepared using buffered-

HF etches and oxygen anneals. LLO (CrysTec GmbH) substrates were cleaned with acetone,

methanol, and isopropyl alcohol, then annealed at 900◦ C in flowing oxygen for 2 hours, re-

vealing a smooth step-terrace structure with step heights of ∼4.2 Å(see Fig. ??(b)). Longer

and/or higher temperature annealing resulted in the formation of large surface particles,

likely resulting from a small fraction of Lu occupying the A-site creating a slightly off-

stoichiometric crystal. Films were grown using 90◦ off-axis RF-magnetron sputtering at

substrate temperatures of 525◦ C in a 200 mTorr, 38:2 Ar:O2 atmosphere with a ∼2.4

nm/min growth rate and subsequently cooled to room temperature in 450 Torr oxygen.

Higher oxygen partial pressure during growth suppressed the transition temperature.

FILM CHARACTERIZATION

X-ray diffraction was carried out on a Bruker D-8 in order to assess the crystalline qual-

ity. Out-of-plane scans used a scintillator point detector while reciprocal space maps were

performed in asymmetric, grazing incidence mode with a line detector. Film thickness was

2
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FIG. 1: Reciprocal space maps of BaBiO3. Reciprocal space maps around the 103pc reflection for

(a) a fully coherent 4.6 nm thick film on LLO, as well bilayer relaxed films on LLO that are (b)

6.1 nm thick and (c) 12.1 nm thick. A (d) fully relaxed 18.3 nm thick film on STO.
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FIG. 2: Extracted structural data from x-ray diffraction. (a) Lattice parameter vs. thickness for

films on LLO and STO. The dashed line indicates the bulk Ibmm value. (b) Relative intensity of

coherent and relaxed phases on LLO.
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measured using x-ray reflectivity. Surface topography was performed with a Bruker AFM.

Electrical contacts were made using silver electrodes sputtered through a metal shadow

mask in a square Van der Pauw configuration at the corners of the 5 mm × 5 mm sample.

Magnetotransport measurements were performed in a Quantum Design Physical Properties

Measurement System helium cryostat from 1.8 K to 300 K with fields up to 1.8 T.

FINKEL’STEIN MODEL FOR HOMOGENEOUSLY DISORDERED FILMS

For thin homogeneously disordered films, Finkel’stein developed a renormalization-group

treatment for the critical temperature Tc suppression from Coulomb interactions (hereafter

kB = ~ = 1) [1]

Tc
Tc0

= exp(−1/γ)

(1 +

√
t/2

γ − t/4

)(
1−

√
t/2

γ − t/4

)−11/
√
2t

(1)

where γ = 1/ ln(Tc0τ) is a disorder related fitting parameter that depends on the elastic

scattering time τ and unrenormalized bulk transition temperature Tc0, while t = e2RS/2π
2.

The dashed lines in Fig. ??(c) represent fits to the initial low RS films and yield an increase

in the scattering time τ by a factor of 3 for films on LLO compared to STO.

As alluded in the main text, Eq. (1) does not accurately describe our data over the

entire range of accessible parameters. This is not entirely surprising as the only parameter

in Finkel’stein’s model that controls the flow of Tc is dimensionless conductance t−1. There

are various factors that can affect Eq. (1). The importance of the exchange interaction was

explored in a series of studies, most recently in Ref. [2]. It was shown that the inclusion of

a triplet channel coupling constant in the renormalization scheme can have a sizable effect

on Tc. Furthermore, it was also emphasized that the effect of the Coulomb interaction on Tc

is sensitive to the cases of long-range versus short-range interaction models. In particular,

in the latter case Tc can be actually boosted to a higher value. More importantly for our

experiments, Eq. (1) is expected to break down once film thickness d becomes comparable

to or greater than the mean free path d > l. Indeed, the initial gradual shift of Tc is given

by
Tc − Tc0
Tc0

= − t
6

ln3

(
1

Tc0τ

)
(2)

which follows from Eq. (1) upon expansion over
√
t|γ−1| � 1. However, as pointed out by
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Finkel’stein [1] for films with d > l the cutoff of renormalization-group flow will become the

Thouless energy ET = D/d2 instead of τ−1. As a result, for thicker films one expects the

initial shift of Tc to be given by

Tc − Tc0
Tc0

= − 1

4(kFd)(kF l)
ln3

(
ET
Tc0

)
(3)

instead of Eq. (2), where we also used proper expression for the dimensionless conductance

of a 3D film t−1 = (2/3)(kFd)(kF l). As compared to Eq. (2) this result yields much weaker

Tc suppression as the logarithm contains an extra smallness in a parameter l/d � 1 as

ln ET

Tc0
= ln (l/d)2

Tc0τ
, which practically reduces the effect by an order of magnitude because

of its cubic dependence in Eq. (3). In this regime one may be interested in considering

other possible corrections to Tc which are beyond the renormalization group treatment.

In particular, electron-electron scattering with large momentum transfer, ∼ kF , may be

important as renormalization group analysis that gives Eq. (1) captures only processes with

typical momentum transfer of order l−1. We are unaware of a detailed theory in this regime,

but an estimate of these localizing corrections to Tc gives [Tc − Tc0]/Tc0 ∝ −1/(kF l) which

is independent of kFd � 1 (still assumes kF l > 1) and thus can dominate over Eq. (3) for

thick films.

FLUCTUATIONS AND MAGNETORESISTANCE

Gaussian fluctuations of Cooper pairs above Tc are described by Aslamazov-Larkin (AL)

and lead to a decrease in the resistance due to fluctuating short-circuits. The density-of-

state (DOS) term arises from the reduction in the one-particle DOS when pairing occurs and

increases the normal electron resistivity. The coherent scattering of pairs leads to the Maki-

Thompson (MT) interference contribution. Finally, weak localization (WL) can contribute

to the observed magnetoresistance (MR) and takes a similar form as the MT contributions.

The total MR is then the sum of these terms. For thin disordered superconductors the

fluctuation magnetoresistance contributions away from Tc and at relatively weak fields are

as follows [3–11]:

δRAL
S (H,T )

R2
S

= − πGQ

ln(T/Tc)

[(
HT

H

)2 [
ψ

(
1

2
+
HT

H

)
− ψ

(
1 +

HT

H

)
+

H

2HT

]
− 1

8

]
, (4)

δRMR
S (H,T )

R2
S

= GQAa

[
ln

(
H

Ha

)
+ ψ

(
1

2
+
Ha

H

)]
, a = {MT,DOS,WL} (5)
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FIG. 3: Fluctuation-induced and weak-localization fits to the 8.2 nm BPBO on STO sample shown

in Fig. ??(b). Field sweeps at (a) 10 K with fit parameters of τi = 3.4·10−12 s and τWL = 1.6·10−12

s; (b) 12 K with fit parameters of τi = 2.8 · 10−12 s and τWL = 1.5 · 10−12 s; (c) 15 K with fit

parameters of τi = 1.0 · 10−14 s and τWL = 5.5 · 10−13 s; and (d) 20 K with fit parameters of

τi = 1.0 · 10−15 s and τWL = 6.3 · 10−13 s.

where GQ = e2/(2π), HT = (2T/πeD) ln(T/Tc), and ψ(x) is the digamma function. In

the case of MR from MT, DOS, and WL contributions they all have the same func-

tional form as governed by the function ln(x) + ψ(1/2 + 1/x) albeit with different am-

plitude factor Aa, and are sensitive to a different crossover field Ha. For the MT and WL

cases the crossover field is determined by the dephasing processes, HMT,WL = (4eDτφ)−1,
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where τφ is the electron phase-breaking time, which is in general different for WL and

MT contributions, see discussion in Ref. [7] and references therein. For WL the Coulomb

interaction leads to τ−1φ ' T (RSGQ) ln(1/RSGQ), however, interactions in the Cooper

channel are also important. Very close to Tc the Cooper channel gives a similar con-

tribution to τφ, without a logarithmic factor, but with the bigger numerical pre-factor,

while further away from Tc dephasing from electron-fluctuation interactions is suppressed

τ−1φ ' T (RSGQ) ln(1/Tτ)/ ln2(T/Tc). Regularization of MT contribution is a subtler prob-

lem, which is dominated by the interactions in the Cooper channel and can be roughly

estimated by τ−1φ ' T
√
RSGQ, which is parametrically distinct from the dephasing time

of the WL term. Finally, in the case of the DOS term, the crossover field is HDOS = HT .

The amplitude factors are as follows: AMT = 1
π
β(T/Tc), where β is the Larkin’s electron-

electron interaction strength parameter in the Cooper channel. This function is tabu-

lated and has following limiting behavior: β = π2/(6 ln2(T/Tc)) for ln(T/Tc) � 1 and

β = π2/(4 ln(T/Tc)) for ln(T/Tc) � 1. The WL and DOS terms in MR have an opposite

sign, namely AWL = −αSO/π, where αSO is the dimensionless parameter of the strength of

spin-orbit interaction, and ADOS = −28ζ(3)/π3. The diffusion coefficient D is calculated

from the slope of the upper critical field D = −(4/πe)(dHc2/dT )−1Tc and the transition tem-

perature Tc is taken to be the 50% of the normal state value in resistivity measurements.

This leaves the scattering times, τφ, and spin-orbit interaction constant, αSO, as the fitting

parameters. For all films αSO fits to the limiting case of αSO = 1, consistent with weak lo-

calization and small spin-orbit interaction with scattering impurities. Fig. 3 shows example

fits for an 8.2 nm BPBO film on STO.
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