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We use resonant inelastic x-ray scattering to probe the propagation of plasmons in the electron-doped
cuprate superconductor Sr0.9La0.1CuO2. We detect a plasmon gap of ∼120 meV at the two-dimensional
Brillouin zone center, indicating that low-energy plasmons in Sr0.9La0.1CuO2 are not strictly acoustic. The
plasmon dispersion, including the gap, is accurately captured by layered t-J-V model calculations.
A similar analysis performed on recent resonant inelastic x-ray scattering data from other cuprates suggests
that the plasmon gap is generic and its size is related to the magnitude of the interlayer hopping tz. Our work
signifies the three dimensionality of the charge dynamics in layered cuprates and provides a new method to
determine tz.
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A variety of enigmatic states emerge in layered cuprates
upon hole doping or electron doping, such as the pseudo-
gap, charge order, strange metal, and—most prominently—
high-temperature superconductivity [1,2]. While it is
widely believed that antiferromagnetic spin fluctuations
play a key role in the superconducting pairing [3–8], it is
not yet established whether the spin channel alone is
responsible for the superconductivity in cuprates. For
instance, the relevance of electron-phonon coupling is still
under debate [9–15], and theoretical studies propose that
low-energy plasmons [16–22] or plasmon-phonon modes
[23,24] mediate superconductivity in cuprates, or

contribute constructively to the high superconducting
transition temperature Tc [25,26]. Irrespective of the
specific type of pairing glue, Anderson and co-workers
suggested that Tc is not a single-plane property [27] and
interlayer Josephson tunneling of Cooper pairs strongly
amplifies the Tc of cuprates [28,29], which was discussed
controversially in subsequent studies [30–36]. The inter-
layer tunneling mechanism is most effective when coherent
single particle hopping between adjacent CuO2 planes is
inhibited in the normal state [28]. Nevertheless, coherent
normal-state c-axis transport properties were detected in
various experiments on overdoped cuprates [37–39], while
in lightly doped cuprates it is challenging to assess whether
interlayer hopping is small or absent [37,40]. In fact, the
extraction of accurate values of the interlayer hopping
integral tz from experimental data has proven difficult not
only for lightly but also for overdoped cuprates [38,41–45].
Hence, the tz determined from first-principle calculations
[46,47] is frequently employed, which was suggested to be
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as large as t0 or 0.1t in some cuprates [47], with t0 and t
denoting the in-plane next-nearest and nearest neighbor
hopping, respectively [Fig. 1(a)]. In contrast, other studies
assume that tz is negligibly small compared to t0 and t,
which is in line with a smaller interlayer hopping evaluated
from experiments [40,42]. Thus, new methods for a reliable
determination of the contentious parameter tz are highly
desirable.
Notably, recent theoretical work has emphasized that the

interlayer hopping is also encoded in the plasmon spectrum
of cuprates and should manifest as a gap at the two-
dimensional (2D) Brillouin zone (BZ) center [48]. More
specifically, in layered systems, such as the cuprates, the
plasmon dispersion (for small q) neither follows a

ffiffiffi

q
p

dependence that is typical for 2Dmetals, nor the q2 behavior
of isotropic 3D metals [49–51]. Instead, poorly screened
interlayer Coulomb interaction between the CuO2 planes
gives rise to a plasmon spectrum containing a set of acoustic
branches, which disperse linearly for small q, and one
optical branch [17]. In the presence of interlayer charge
transfer, however, the former plasmon branches are not
strictly acoustic, but gapped at the 2D BZ center. Yet, while
seemingly acoustic plasmons were identified in recent
resonant inelastic x-ray scattering (RIXS) experiments on
various electron- and hole-doped cuprates [52–55] includ-
ing La1.825Ce0.175CuO4 (LCCO) and La1.84Sr0.16CuO4

(LSCO), a gap has not been observed unambiguously.
In this Letter, we study plasmon excitations in the

electron-doped cuprate Sr0.9La0.1CuO2 (SLCO), which
exhibits the infinite-layer crystal structure. Using RIXS,
we detect an energy gap of the acousticlike modes at the in-
plane BZ center. The observed plasmon dispersion, includ-
ing the gap, is accurately captured by t-J-V model
calculations, and characteristic microscopic parameters,
such as tz, are determined. The application of our analysis
scheme to previously published RIXS data of other
cuprates suggests considerably smaller plasmon gaps and
interlayer hoppings in LCCO and LSCO.
The RIXS measurements were performed on a SLCO

thin film with a superconducting transition temperature
Tc ∼ 30 K and a thickness of 294 Å grown by molecular-
beam epitaxy on a (110) oriented TbScO3 substrate [56].
Figure 1(b) shows the crystal structure of SLCO,
which exhibits CuO2 planes stacked along the c-axis

direction with La/Sr spacer layers, which corresponds to
the infinite-layer structure [57,58]. The lattice constants
a; b ¼ 3.960 Å and c ¼ 3.405 Åwere determined by x-ray
diffraction. Note that for SLCO the interlayer distance is
equivalent to the c-axis lattice constant, whereas in LCCO
the interlayer distance corresponds to c=2 ∼ 6.05 Å [52].
All RIXS spectra were collected at the Cu L3 edge with

high energy resolution (ΔE ≈ 40 meV) at T ¼ 20 K at the
I21-RIXS beamline of the Diamond Light Source, UK [59].
The momentum resolution was Δq ≈ 0.01 Å−1 [59]. A
similar scattering geometry as in Ref. [54] was employed,
with the a=b axis and the c axis of SLCO lying in the
scattering plane and incident photons linearly polarized
perpendicular to the scattering plane (σ polarization).
Importantly, the continuous rotation of the RIXS spec-
trometer arm allowed for a variation of the scattering angle,
and the corresponding rotation of the sample enabled the
independent variation of the in-plane (qk) and out-of-plane
momentum transfer (qz). In the following we denote the
momentum transfer by ðH;K; LÞ in reciprocal lattice
units ð2π=a; 2π=b; 2π=cÞ.
Figure 2(a) shows a representative set of RIXS spectra

for different in-plane momenta H. The spectra were fitted
by the sum of the elastic line at zero-energy loss and several
damped harmonic oscillator functions accounting for
inelastic features. Details about the fitting procedure,
assignment of the features, and the complete set of spectra
are given in the Supplemental Material [60]. As the most
relevant features, we identify (i) an essentially nondi-
spersive peak around 95 meV, (ii) a paramagnon peak
around 190 meV for jHj ≥ 0.06, and (iii) a fast dispersive
peak with an energy higher than 120 meV [Figs. 2(a) and
2(b)]. We attribute the 95 meV feature to a high-energy
(HE) phonon. While phonons in cuprates are typically
observed below 85 meV [76–78], zone-boundary phonons
with energies as high as 91.4 meV were predicted for the
infinite-layer cuprate SrCuO2 [79]. The further increase of
phonon energy in our SLCO film could be due to the
epitaxial strain induced by the substrate or the La doping.
The assignment of the paramagnon peak (see Supplemental
Material [60]) is in line with Ref. [80], which investigated
the paramagnon dispersion in a similar SLCO film, but
focused on large in-plane momenta and employed a lower
energy resolution of ΔE ¼ 265 meV. In contrast to the
paramagnon, the fast dispersing peak exhibits substantial
spectral intensity at the zone center H ¼ 0 [Figs. 2(a)
and 2(b)]. Close inspection of the spectra with small H
reveals that the peak likely also contains contributions from
the HE phonon, which precludes unambiguous fitting for
jHj ≤ 0.005. Nevertheless, we emphasize that the center of
gravity of the superposed peak [labeled as plasmon in
Figs. 2(a) and 2(b)] exceeds 120 meV even at H ¼ 0,
indicating the presence of an energy gap for this mode.
Notably, a charge origin of the fast dispersing mode was
already proposed in the low-resolution measurements in

(a) (b)

FIG. 1. (a) Schematic of the hopping integrals t, t0, and tz on a
stacked square lattice. (b) Schematic of the crystal structure of
Sr0.9La0.1CuO2 (SLCO). Solid black lines correspond to the
crystallographic unit cell. CuO2 planes are indicated in orange.
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Ref. [80], while a gap around H ¼ 0 was not resolved and
the investigation of a possible dispersion along L was
lacking. As shown in Figs. 2(c) and 2(d), our high-resolution
measurement reveals that the peak exhibits a distinctive
dispersion as a function of L. Along the lines of
Refs. [52,54], such L dependence with a minimum around
L ¼ 0.5 identifies the mode as an acoustic plasmon exci-
tation. On the other hand, the H dependence in Fig. 2(b)
shows that the mode exhibits a gap of ∼120 meV atH ¼ 0.
Thus, the seemingly acoustic plasmons in SLCO are not
strictly acoustic, but gapped. This observation calls for a
thorough theoretical investigation of the emergence and the
energy scale of the gap, which we present next.
Previously, typical properties of the plasmons in cuprates

were studied by random phase approximation (RPA)
calculations [17,25,49,55,81], a combination of determi-
nant quantum Monte Carlo and RPA in a layered Hubbard
model [52], an extended variational wave function
approach [82], and a large-N theory of the layered t-J-V
model [48,83,84]. In the following, we turn to the latter
theory, which emphasized in Ref. [48] that acoustic
plasmons in cuprates are not strictly acoustic, but exhibit
an energy gap at the 2D BZ center. The t-J model is widely
employed as an effective model for cuprates [85] and
accounts for strong correlations. Importantly, the t-J-V
model includes not only first-nearest-neighbor (t), second-
nearest-neighbor ðt0Þ, and interlayer (tz) hoppings
[Fig. 1(a)], but also the long-range Coulomb interaction
VðqÞ (see Supplemental Material [60]), which is crucial
given the three-dimensional character of plasmons in
layered cuprates [52]. Figure 3(a) shows the imaginary

part of the charge susceptibility χ00cðq;ωÞ computed in the
framework of a large-N theory of the t-J-V model for
doping δ ¼ 0.1 and a broadening parameter Γ=t ¼ 0.1,
which is required to account for the experimental resolution
and a possible broadening due to correlations [86]. All
other fit components (see Supplemental Material [60]) were
subtracted from the RIXS spectrum in Fig. 3(a) to make a
direct comparison with χ00cðq;ωÞ. To capture the full
plasmon dispersion in SLCO, we have applied an error
minimization fitting procedure for the t-J-V model (see
Supplemental Material [60]), using the experimentally
determined plasmon peak positions [Figs. 2(b) and 2(d)]
as an input. Figures 3(b) and 3(c) show the computed
plasmon branches as a function of momenta H and L,
respectively, together with corresponding experimental
data. Note that the experimentally determined peak posi-
tions for jHj ≤ 0.005 [gray symbols in Figs. 3(b) and 3(d)]
with a strong overlap with the HE phonon were excluded
from the fitting procedure for the t-J-V model, to avoid any
bias in the determination of a gap at the 2D BZ center.
Besides the measured plasmon branches along the
ðH; 0; 0.45Þ and ð0.05; 0; LÞ directions, additional calcu-
lated branches for unmeasuredH and L values are shown in
Figs. 3(b) and 3(c), respectively. The obtained spectrum of
plasmon modes, including the optical branch for L ¼ 0, is
qualitatively reminiscent of previous calculations for cup-
rates [17,25,52,81], but additionally features a distinct
energy gap at H;K ¼ 0 [Fig. 3(b)], which is along the
lines of calculations in Refs. [48,54,82–84].
Figure 3(d) focuses on small in-plane momenta around

the observed plasmon gap at the 2D BZ center and
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FIG. 2. (a) Vertically stacked RIXS spectra for representative momenta along the ðH; 0; 0.45Þ direction. Solid black lines are fits to the
spectra. Fitted peak profiles of the plasmon, paramagnon, and high-energy (HE) phonon are shown, while the other contributions to the
fit are omitted for clarity (for details of the fitting procedure see Supplemental Material [60]). (b) RIXS intensity map for momenta along
the ðH; 0; 0.45Þ direction. Open symbols are peak positions extracted from fits. The color scale of the map is capped at 25 arb. units
(white color). (c) Vertically stacked RIXS spectra for representative momenta along the ð0.05; 0; LÞ direction. (d) RIXS intensity map for
momenta along the ð0.05; 0; LÞ direction.

PHYSICAL REVIEW LETTERS 129, 047001 (2022)

047001-3



illustrates the excellent agreement between experiment
and theory. As the key result of our study, the fitting with
the t-J-V model yields tz=t ¼ 0.055 (corresponding to
tz ¼ 55 meV, see Supplemental Material) for the interlayer
hopping. This is in line with tz=t ¼ 0.06, determined by
first-principles calculations for CaCuO2 [87], which is a
closely related infinite-layer cuprate. Moreover, we
obtain the in-plane and out-of-plane dielectric constants
ϵk=ϵ0 ¼ 5.89 and ϵ⊥=ϵ0 ¼ 1.06 from the t-J-V model
fitting, which are similar to theoretical predictions for
infinite-layer cuprates [79]. We emphasize that a gap with
a magnitude of ∼120 meV is a robust feature, which is
rooted in the presence of a finite tz [48] and cannot
be attributed exclusively to other effects, such as the
broadening Γ. In fact, in absence of interlayer hopping,
Γ can induce only a relatively small gap in SLCO (see
Supplemental Material [60]).
As a next step, we apply the present fitting procedure for

the t-J-V model to other systems and revisit previous RIXS
data on LCCO and LSCO reported in Refs. [52,54],
respectively. Note that in the case of LCCO the gap was
estimated to be approximately zero [52], while in LSCO the
previous analysis with the t-J-V model indicated 75 meVas
an upper limit [54]. The present analysis (see Supplemental
Material [60]) indicates an upper limit of 82 meV for the
gap in LCCO and 55 meV for LSCO, which are both
substantially smaller than the gap size in SLCO. While the
strength of the Coulomb interaction is comparable in the
three cuprates, a particularly strong interlayer hopping can
be expected in the latter compound due to its distinct
infinite-layer crystal structure with narrowly spaced
adjacent CuO2 planes [Fig. 1(b)], thus rationalizing the
large gap value of more than 100 meV, which in turn

enabled our first conclusive observation of a plasmon gap
with RIXS.
The corresponding hoppings tz=t for the upper limits of

the plasmon gaps in LCCO and LSCO are 0.03
(tz ¼ 30 meV) and 0.01 (tz ¼ 7 meV), respectively.
Employing a larger tz=t of 0.1 for LSCO [47] would yield
a large gap of 344 meV with the present methodology. This
suggests that the interlayer hopping in LSCO is indeed very
small and motivates future RIXS studies with higher
resolution to determine the value of the gap in LSCO
experimentally. Furthermore, we estimate the lower bound
of the plasmon gap by assuming a hypothetical tz ¼ 0,
leading to 58 and 41 meV for LCCO and LSCO, respec-
tively. These lower bounds arise purely from the broad-
ening Γ (see Supplemental Material [60]).
Having established the plasmon gap at the 2D BZ center

in different cuprates, we next focus on the plasmon
properties for nonzero in-plane momentum transfer. A
close inspection of the H dependence of the dispersion
in the vicinity of H ¼ 0 in LCCO and LSCO [52,54]
reveals that the intensity of the plasmon peak decreases
when approaching the 2D BZ center. This behavior is also
expected from the t-J-V model calculations [Fig. 3(b)]. For
SLCO, a similar trend might not be obvious in the RIXS
intensity map in Fig. 2(b), due to the overlap with the
paramagnon, phonons, and the elastic line. Nevertheless, a
plot of the fitted integrated intensity of the plasmon peak as
a function of H reveals that also SLCO exhibits a
comparable trend (see Supplemental Material [60])—
except for momenta jHj ≤ 0.005 where a sharp increase
of the intensity occurs. This increase is likely a result of the
superposition of the plasmon and the HE phonon peak, but
cannot be disentangled unambiguously in the present RIXS

FIG. 3. (a) Imaginary part of the charge susceptibility χ00cðq;ωÞ for momentum (0.02,0,0.45) (solid black line) computed in the layered
t-J-V model. Superimposed are experimental data (blue symbols), which correspond to the plasmon component in the RIXS raw data.
The intensity of χ00cðq;ωÞ is scaled such that it fits to the maximum of the RIXS data. (b) Computed intensity map of χ00cðq;ωÞ for
momenta along the ðH; 0; 0.45Þ direction. The solid black line corresponds to the maxima of χ00cðq;ωÞ. The other lines indicate the
maxima of χ00cðq;ωÞ computed for different L. Experimental plasmon peak positions for momenta along the ðH; 0; 0.45Þ direction are
superimposed as white and gray symbols. The former symbols correspond to peak positions used as an input for the fitting procedure for
the t-J-V model, while the latter were not included (see text). (c) Computed intensity map and maxima for different H along the
ð0.05; 0; LÞ direction. (d) Computed plasmon dispersion around the 2D BZ center at H ¼ 0 for different L.
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data owing to an insufficient energy resolution. Future
higher-resolution RIXS experiments might be capable of
resolving the different spectral components around H ¼ 0
in SLCO, and are also desirable for LSCO, where a
coupling between the plasmon and a c-axis polarized
phonon mode of apical oxygen ions was predicted for
small momenta, with an expected gap of the mixed
plasmon-phonon mode of ∼60 meV [24]. Note that in
SLCO, however, plasmon-phonon coupling can be ruled
out (see Supplemental Material [60]).
In summary, our observation and theoretical description

of the plasmon gap provide the missing piece of the puzzle
alongside the qz dependence [52,54,55] to consolidate the
3D character of plasmons in cuprates. This gap was neither
evidenced in previous optical spectroscopy [88] nor elec-
tron-energy loss spectroscopy (EELS) studies [89], yet
its unambiguous presence underscores the importance of
explicit inclusion of the interlayer hopping tz for a
comprehensive description of the charge dynamics of
cuprates. On a fundamental level, the charge degrees of
freedom and the dynamics of the normal state are consid-
ered as a prerequisite for understanding the superconduct-
ing state [36]. Hence, in a broader context, the presence of a
substantial plasmon gap at the 2D BZ center calls for a
reassessment of the theories proposing that acoustic plas-
mons mediate superconductivity [16–22] and raise the Tc
of cuprates as much as 20% [25]. In particular, it should be
evaluated whether the gap energy has a positive or negative
effect in the suggested pairing scenarios. Along the lines of
previous discussions about a correlation between Tc and
the magnitude of t0 [90], future applications of our
methodology may provide new insights into a possible
relation between Tc and tz, as well as the putative scaling of
Tc with the number of CuO2 planes per unit cell [91,92]. In
this context, we note that the large-N theory for the t-J-V
model indicates that the doping dependence of the plasmon
gap exhibits a domelike shape [48], similar to the Tc dome
of cuprates [1]. Nevertheless, detailed calculations are
required to assess the impact of a gap on the value of
Tc, considering not only the electron self-energy, but also
vertex corrections, as the relatively large energy scale of the
plasmon may invalidate Migdal’s theorem [93].
More specifically, our approach combining RIXS and

t-J-V model calculations enables the extraction of robust
values of tz in cuprates—possibly even in lightly doped
cuprates which has not been accomplished with other
experimental methods [40–44]. Moreover, we anticipate
that our methodology will be applicable to other materials,
including layered 2D materials and van der Waals hetero-
structures [94–96], as well as the newly discovered infinite-
layer nickelate superconductors [97–99], which might
possess even larger interlayer hoppings than SLCO [87].
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