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SrRuO3, a ferromagnet with an approximately 160 K Curie temperature, exhibits a T2-dependent dc
resistivity below ≈30 K. Nevertheless, previous optical studies in the infrared and terahertz range show
non-Drude dynamics at low temperatures, which seem to contradict Fermi-liquid predictions. In this work,
we measure the low-frequency THz range response of thin films with residual resistivity ratios,
ρ300K=ρ4K ≈ 74. At temperatures below 30 K, we find both a sharp zero frequency mode which has a
width narrower than kBT=ℏ as well as a broader zero frequency Lorentzian that has at least an order of
magnitude larger scattering. Both features have temperature dependences consistent with a Fermi liquid
with the wider feature explicitly showing a T2 scaling. Above 30 K, there is a crossover to a regime
described by a single Drude peak that we believe arises from strong interband electron-electron scattering.
Such two channel Drude transport sheds light on reports of the violation of Matthiessen’s rule and extreme
sensitivity to disorder in metallic ruthenates.
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The 4d ruthenates are well suited to the study of itinerant
correlated electrons and the stability of the Fermi-liquid
state because no explicit doping is necessary to produce
metallic conduction [1–5]. The position of the Fermi level
in bands resulting from the hybridization of O 2p and
Ru 4d leads to ground-state behavior ranging from ferro-
magnetism in SrRuO3, metallic paramagnetism in CaRuO3

[6], insulating antiferromagnetism in Ca2RuO4, quantum
critical metamagnetism in Sr3Ru2O7 [7], and unconven-
tional superconductivity in Sr2RuO4 [5]. These materials
present an opportunity to investigate correlated electrons in
the low-disorder limit.
SrRuO3 exhibits a transition from a paramagnetic to a

ferromagnetic state at Tc ≈ 160 K. Quantum oscillations
and a quadratic temperature dependence of the resistivity
have been measured in the highest-quality samples [4,8].
These findings suggest that the ground state of SrRuO3 is a
magnetic Fermi liquid. Anomalous Hall and magneto-optical
measurements suggest the existence of intrinsic Berry phase
effects near the Fermi energy [9,10]. Nevertheless, among
other experimental observations, infrared and optical mea-
surements of SrRuO3 films (that generally have had higher-
disorder levels than single crystals) have shown a finite
frequency peak in σ1 at frequencies of order 3kBT [11]. At
frequencies above the peak, the real part of the optical
conductivity was observed to fall off as ω−1=2 [11].

Optical measurements at lower frequency gave evidence
for a related fractional power law dependence of the
conductivity on the transport relaxation time [12]. The
theoretical basis to understand this seeming deviation from
the Lorentzian Drude form (and by implication the non-
Fermi-liquid nature of this material) is not clear considering
the radical implications it would have on the link between ac
and dc electrical transport. Similar deviations from simple
Drude forms of finite frequency peaks and anomalous power
laws have been seen in the related compound CaRuO3

[6,13]. In addition, SrRuO3 has a very striking negative
deviation from Matthiessen’s rule when impurity scattering
is increased through electron irradiation. It was demonstrated
that although the fractional form works for more disordered
samples, it does not account for this violation for low-
disorder samples [14,15]. These results highlight the extreme
sensitivity to disorder in this material and the apparent
dependence of even the inelastic scattering on sample
quality. Therefore, measuring low-disorder SrRuO3 samples
at low energies would provide a unique opportunity to
examine Fermi-liquid predictions in this strongly correlated
material. Previous studies were performed at higher frequen-
cies and/or on samples with larger disorder. Recently,
extremely low-disorder films were grown of which photo-
emission measurements reveal a complement of heavy low
energy bands [16].
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In this Letter, we use time domain terahertz spectroscopy
(TDTS) to examine the complex conductivity and resis-
tivity of very-high-quality thin films of SrRuO3. Below
30 K, we find the real part of the THz conductivity exhibits
two very distinct low energy peaks that are related to
different conduction channels. There is both a very sharp
zero frequency conducting mode which has a width
narrower than kBT=ℏ as well as a broader Lorentzian peak
with at least an order of magnitude larger scattering rate.
Both features have temperature dependences consistent
with a Fermi liquid with the wider feature explicitly
showing a T2 scaling. There are a number of possibilities
for the origin of these features including multiband effects
that arise from momentum conserving interband scattering
and the approximate conservation of a pseudomomentum
that arises from this material’s quasi-1D Fermi surface
sheets. Above 30 K, there is a crossover to a regime
described by a single Drude peak that we believe arises
from strong interband electron-electron scattering.
In TDTS, an approximately 1 ps long electromagnetic

pulse is transmitted through a substrate and film. The complex
transmission TðωÞ is obtained from the Fourier transform of
the time trace referenced to a bare substrate. Complex
conductivity σðωÞ is calculated without the need for Kramers-
Kronig transformation from the complex transmission
using TðωÞ ¼ ½ð1þ nÞ=1þ nþ σðωÞdZ0�e½ðiωΔLðn−1ÞÞ=ðcÞ�.
In this expression, n is the substrate index, ΔL is a correction
that accounts for thickness differences between the reference
substrate and the sample substrate, d is the film thickness, and
Z0 is the impedance of free space (377 Ω). We determined the
effective ΔL from a self-consistent first echo measurement of
the sample and substrate at different temperatures. The proper
determination ofΔL to submicron accuracy is essential for the
accuracy of these results [17]. The films were grown on
single-crystal DyScO3 (110) substrates by molecular-beam
epitaxy to a thickness of 23 nm [17]. Because this substrate is
very lossy to the THz signal in the [001] direction (see
Supplemental Material [17] Fig. S3), in all presented
measurements the polarization of the incident THz beam is
aligned parallel to the ½1̄10� direction. Our data on samples
grown on less lossy (and more highly strained) NdGaO3

substrates show that the in-plane anisotropy is less than 20%
with no qualitative difference between the two directions
(Supplemental Material [17] Fig. S4).
dc resistivity ρðTÞ was measured in the van der Pauw

geometry and anisotropy determined from the Montgomery
method [28] [Fig. 1(a)]. The kink at 168 K is attributed to
the development of ferromagnetic order [29]. The high
quality of the film is reflected in its low residual resistivity
of ρðT → 0Þ ∼ 2.6 μΩ cm giving a large residual resistivity
ratio of ≈74 along the ½1̄10� direction. This residual
resistivity is almost 20 times lower than the films used
in previous TDTS studies [12]. A quadratic dependence on
the temperature of ρðTÞ − ρð0Þ has been reported up to at
least 30 K [inset of Fig. 1(a)]. Our observation of a T2

dependence of the resistivity is consistent with other studies
on low-disorder samples [8,30] as opposed to behavior Tβ,
where β ∼ 1–2 is observed primarily in samples with
residual resistivities above 50 μΩ cm [29].
In Fig. 1(b), we plot the real part of the THz and dc

conductivity at different temperatures. With decreasing
temperature, there is a remarkable sharpening of a low-
frequency Drude-like peak. The real σ1 and imaginary σ2
parts of the complex conductivity, with corresponding dc
values at 3 K are plotted in Fig. 1(c). At this temperature,
the peak in σ1 is so narrow that σ2 > σ1 for the entire
frequency range measured. In a simple single-band metal,
one expects that the scattering of electrons is dominated by
quenched disorder as T → 0 and that the dynamical
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FIG. 1. (a) dc resistivity as a function of the temperature for the
SrRuO3 film for the two orthogonal directions. Inset: resistivity
minus residual resistivity as a function of T2. Fits to the data in
the temperature range 2–32 K are shown as black lines. (b) Real
part of the THz conductivity σ1 from 5 K to room temperature
along with corresponding dc values. (c) One Drude vs two Drude
fit of dc and THz data at 3 K. The dc conductivity and real and
imaginary parts of the complex conductivity are fitted simulta-
neously.
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conductivity can be modeled with a single Drude oscillator
with the functional form σðωÞ ¼ ϵ0½ðω2

pÞ=ð1=τ − iωÞ�
(where ωp is the plasma frequency and 1=τ is the current
decay rate). Although the σ1 data superficially have such a
Drude form, the 3 K complex conductivity, in fact, cannot
be reproduced with a single Drude oscillator. As can be
seen in Fig. 1(c), the best fits with a single Drude oscillator
to the THz constrained with the dc resistivity under-
estimates the real conductivity and overestimates the
imaginary conductivity. Note that we can make such an
assessment despite the fact that the spectral range between
dc and 200 GHz is not measured because the real and
imaginary parts of σ are Kramers-Kronig related to each
other; e.g., the data are strongly constrained for parts of the
spectral range that are not explicitly measured, by parts that
are measured. In order to fit the 3 K conductivity, at least
two Lorentzian oscillators are needed: one narrow with
1=τ1 ≲ 50 GHz scattering rate and one wider with 1=τ2 ∼
300 GHz scattering rate. Because the narrow oscillator
has a width below the measured frequency range, we can
only set an upper limit on its width, although we are
highly sensitive to its spectral weight. In these fits, we
adopt the highest value of 1=τ1 consistent with THz
data as its upper bound. The full functional form
is σðωÞ¼P

2
n¼1ϵ0ωpn

2½1=ð1=τn− iωÞ�− iϵ0ðϵ∞−1Þω. ϵ∞
accounts for effects of interband transitions at frequencies
well above our range. As discussed below, the appearance

of multiple Lorentzian Drude peaks is a natural expectation
for a multiband metal.
The necessity to use two Drude terms extends to higher

temperatures. One can see in the 5 K conductivity
[Fig. 2(a)] that the narrow Drude (green area under the
real part of the narrow Drude) accounts for the sharp
upturn toward the dc conductivity, whereas the wide
Drude part (blue) is needed to capture the long tail of
σ1ðωÞ. In the data up to 30 K [Figs. 2(b) and 2(c)], one
cannot fit the imaginary part of the conductivity with a
single Drude if one insists on a fit of the real part. As the
temperature increases, the scattering rate of the narrow
Lorentzian increases faster than the scattering rate of the
wider one, and the rates become equal above 30 K and the
Lorentzians indistinguishable. Hence, a single Drude
fitting above 30 K suffices. It is interesting to note that
this temperature is close to that below which T2 resistivity
has been reported. The scattering rate of the wide Drude
peak goes as T2 below 30 K. The total spectral weight
[Fig. 3(b)] is unchanged within 5% below 30 K, while the
narrow Drude peak corresponds to about 20% of the total
weight in the range where it can be distinguished. Note
that the fractional functional form used previously [12]
does not fit our data (Supplemental Material [17] Sec. IV).
Also note that we see no sign of meV range finite frequency
peaks arising from either finite temperature effects as
observed previously in higher-disorder samples [11] or
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FIG. 2. (a) Real and imaginaryTHzconductivitywithdcvalues at 5K.The red andblue solid lines showfittingwith twoDrude terms.The
green and blue shaded regions correspond to a narrow andwider Drude term, respectively. The green shade is offset to distinguish from the
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that have been predicted to arise from the tilt of the
octahedra [31].
We examined complex resistivity which is the inverse of

complex conductivity data [17]. For a single-band
metal, the “Gurzhi” scaling [32] for a metal with dominant
umklapp scattering as T → 0 predicts the real part
of the resistivity goes as ρ1ðT;ωÞ ¼ ρee0 ðTÞ½1þ ðℏωÞ2=
bπ2ðkBTÞ2� where ρee0 ðTÞ is the quadratic dc resistivity.
This relation arises from the established relation between
T- and ω-induced inelastic scattering [33]. With the b that
is predicted to be 4 for a canonical Fermi liquid, the
scattering is dominated in our temperature and frequency
range by the temperature; e.g., the broadening at 30 K at
zero frequency is expected to be approximately 16.6 times
larger than the broadening at 1 THz at T ¼ 0. This is
consistent with our data in that we find very little
frequency-dependent changes to ρ1 (Supplemental
Material [17] Figs. S6 and S7), while the T-dependence
changes are large. When intraband scattering processes
dominate, the complex resistivity can be related to the
“extended” Drude model (EDM), in which the scattering
rate and effective masses in the Drude formula become
complex and frequency dependent [34]. The EDM has been
used extensively to describe heavy fermion systems
[35,36], high-Tc cuprates [2], and transition-metal

compounds [37]. Within the context of EDM, the slope
of the imaginary part of the complex resistivity with
frequency is proportional to the optical renormalized mass
(m�=mb; mb is the effective band mass). It is found that in
our TDTS data, mass enhancement at the lowest tempera-
tures is ∼6.5 [Supplemental Material [17] Fig. S6(b)],
which roughly agrees with heat capacity and de Haas–van
Alphen measurements [29,38]. In particular, heat
capacity measurements show a Sommerfeld coefficient
γexpt=γtheor ¼ 3.7, suggesting a mass enhancement similar
to what we observe in TDTS measurements [29].
According to an angle-resolved de Haas–van Alphen study,
the effective mass of charge carriers measured for each
Fermi surface sheet ranges from 4.1 to 6.9me [38].
Similarly, angle-resolved photoemission has found masses
of order 3.7me [16] for the β sheet.
We now discuss the possible origins of the multiple low-

frequency Drude peaks and the crossover to a single peak at
higher temperature. As mentioned above, one expects in a
multiband metal like SrRuO3 a number of independent
conduction channels. In the low-temperature limit, disorder
scattering is expected to be dominant, and the different
channels will manifest as different Lorentzian Drude peaks.
These may have very different residual widths as the rate of
scattering by short-range impurities is proportional to the
density of states of the band, which may be very different
between bands. At high temperatures, electron-electron
scattering will dominate. In an almost compensated metal
such as SrRuO3, scattering serves to equalize net velocities
between electrons and hole bands giving rise to a single
Drude peak [33,39]. This crossover scenario is quite
general and discussed in more detail in the Ref. [17]. In
a different scenario, Rosch and Andrei have shown [40,41]
that in 1D it is possible to define a pseudomomentum that
does not decay by two-particle collisions and hence decays
more slowly than the conventional crystal momentum. It is
expected that a state with finite pseudomomentum has
significant projection on current-carrying states. This gives
rise to well-defined and sharp peaks in the optical con-
ductivity. One might expect these effects in even quasi-2D
metals like SrRuO3 as its Fermi surface is composed of
primarily 1D sections that show only weak hybridization
where the bands intersect. Irrespective of the mechanism,
what these scenarios share is the idea that scattering
channels add in the conductivity not the resistivity. The
latter is the usual Matthiessen rule, and in this regard,
our results give understanding of the deviations from
Matthiessen’s rule in this material.
We have examined THz dynamical conductivity in clean

films of SrRuO3, which have more than an order of
magnitude smaller residual resistivity than previously
measured samples, and observed very different results.
At low temperature, a narrow Drude-like peak emerges,
which cannot be parametrized with a single oscillator. As it
is the low-frequency and low-temperature properties of a

(b)

(a)

FIG. 3. (a) Scattering rate of the wide (red) and narrow (blue)
Drude peaks as a function of T. The dashed line is a quadratic fit
to the data below 30 K, and extended to higher T. (b) Spectral
weight of the two Drude peaks (obtained from two Drude fitting)
and their total spectral weight, from 5 to 30 K. Above 30 K, single
Drude fit parameters are given. The spectral weight is propor-
tional to ω2

p.
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system which are diagnostic of its ground state, the T2

dependence of the widths of the low energy conductivity
peaks confirm the Fermi-liquid nature of this compound.
The presence of multiple Drude peaks, however, indicates
effects beyond conventional Boltzmann transport and
might help explain previous reports of deviations from
Matthiessen’s rule. They may indicate either the presence
of extremely strong momentum-conserving electron-
electron interactions or an almost conserved pseudomo-
mentum due to quasi-1D Fermi surfaces of this system.
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I. EXPERIMENTAL DETAILS

The SrRuO3 thin films studied in this work were grown on single-crystal (110) DyScO3 substrates by molecular-beam
epitaxy (MBE) in a dual chamber Veeco GEN10 system to a thickness of ∼23 nm1. Adsorption-controlled growth
conditions are used in which an excess flux of elemental ruthenium is supplied to the growing film and thermodynamics
controls its incorporation through the desorption of volatile RuOx. This growth regime minimizes ruthenium vacancies
in the films and the resulting samples exhibit a high residual resistivity ratio (RRR) in transport measurements1. The
strong dependence of spectral features on sample quality highlights the necessity for such studies of utilizing oxide
MBE, which produces higher quality films than those grown by pulsed laser deposition or sputtering1–3.

In the technique of TDTS an infrared femtosecond laser pulse is split between two paths and excites a pair of
“Auston” switch photoconductive antennae; one acts as an emitter and the other acts as a receiver. When the laser
pulse hits the voltage-biased emitter, a broadband terahertz pulse is produced and collimated by mirrors and lenses
and passes through the sample. The terahertz pulse then falls on the receiving Auston switch. Current only flows
across the receiver switch at the instant the other short femtosecond pulse impinges on it. By varying the difference
in path length between the two pulses, the entire electric field of the transmitted pulse can be mapped out as a
function of time. By dividing the Fourier transform of transmission through the sample by the Fourier transform of
transmission through a reference substrate, one obtains the full complex transmission T (ω) over a frequency range
that can be as broad as 100 GHz to 3.5 THz. The complex transmission is used to calculate the complex conductivity

σ(ω) without the need for Kramers-Kronig transformation using the expression T (ω) = (1+n)
1+n+σ(ω)dZ0

e
iω∆L(n−1)

c . In

this expression n is the index of refraction of the substrate, ∆L is a correction factor that accounts for thickness
difference between the reference substrate and the sample substrate, d is the film thickness, and Z0 is the impedance
of free space (377 Ω). ∆L is a correction to the phase of complex transmission and thus also the complex conductivity.
We determined the effective ∆L from a self-consistent measurement of the first echo of the sample and substrate at
different temperatures (see Supplemental Material Section II below).

II. ∆L DETERMINATION

The thickness difference between the sample substrate and a reference substrate, i.e., ∆L, is usually on the order of
a few microns. Its correct determination can greatly effect the phase of calculated conductivity. A rough measurement
can be made by using a micrometer on the corners of the samples, but the thickness at the center where the optical
aperture is at might be different from the corners. Here we use a self-consistent measurement of the first echo of the
time domain pulse to determine the value of ∆L precisely.

The measurement was performed by taking extended scans in time in which the transmitted THz pulse and the
first echo pulse (e.g., the time delayed pulse that comes from internal reflections inside the substate) are included, for
both the sample and the bare substrate. The phase accumulation can be modeled as in Fig. S1. Here Ai and Bi are
complex phase winding in the optical path in medium i. Tij and Rij are the phase shifts coefficients of transmission
and reflection from the interface of medium i and j, as determined from Fresnel equations. Fig. S2(a) shows time
scans of the pulses at 5 K. The transmitted and first echo pulse of the same duration (∼ 20 ps) are cut from the data
and then Fourier transformed, for the sample and substrate respectively. The Fourier transform of the first echo is
divided by the Fourier transform of the transmitted pulse (see equations in Fig. S1). This is done for the substrate
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Pulse: A1*T12*A2*T23*A3

substrate 1 2 3

1st echo: A1*T12*A2*R23*A2*R21*A2*T23*A3

Divided by 

sample 1 2 3

= R23*A2*A2*R21

1st echo: B1*T12*B2*R23
’*B2*R21*B2*T23

’*B31 echo: B1*T12*B2*R23 *B2*R21*B2*T23 *B3

Pulse: B1*T12*B2*T23
’*B3Divided by 

= R23
’*B2

’*B2
’*R21

FIG. 1: Phase accumulation in a first echo measurement. The blue arrows indicate the propagation of THz pulse. 1, 2, and 3
corresponds to vacuum, DyScO3 and vacuum in this case. The red vertical line represents the thin film sample. Details about
the symbols are explained in the text.

and sample respectively. The result for the sample is divided by the result of the substrate which is then, according
to the equations in Fig. S1. While R21 cancels, R23 and R

′

23 are different which are given by Fresnel’s equations (for
example, see4)

R23 =
n2 − n3
n2 + n3

;R
′

23 =
n2 − n3 − ys
n2 + n3 + ys

(1)

Here n2 and n3 are the indices of refraction for DyScO3 (which we measure separately by referencing to an empty
aperture) and vacuum, and ys is the admittance of the sample normalized with respect to 1/376.73 Ω (the admittance
of vacuum). Since the admittance of the sample relies on the value of ∆L it has to be determined through iteration
until convergence (see below). The phase difference coming from the remaining factors are associated with ∆L as in
the following equation

∆Φ = 2ω∆L
n

c
(2)

Therefore if after subtracting off the phase factors calculated from Eq. 1 one fits the phase versus frequency to a
straight line (see Fig. S2(b)) the slope is proportional to ∆L with known or measured factors/functions including speed
of light and the measured index of refraction of the substrate. Typically one starts with an initial guess coming from
micrometer measurements say a few microns and calculate the conductivity and use this as input for the admittance
to calculate R

′

23 to obtain a new value of ∆L. This process is repeated for each temperature until convergence. For
this sample/substrate combination ∆L converges to about 12.5 µm for both 5 K and 100 K.

III. OPTICAL ANISOTROPY

As discussed in the main text, the orthorhombic DyScO3 substrate has larger optical absorptions for light polarized
along the 〈001〉 axis than the 〈−110〉 axis. See Fig. S3(a), which shows a comparison of the magnitude of room
temperature transmission T (ω) along these two orthogonal directions. One can see there is little signal above 0.8 THz
for polarizations along < 001 > axis, possibly owing to the strong absorption by polarized phonons in this frequency
range. When one divides the FFT of the time trace of sample pulse by reference pulse one gets very noisy data above
0.8 THz as shown in Fig. 3(b)). This makes data taken with 〈001〉 polarized light unreliable for this substrate.

However, a comparison with samples grown on the NdGaO3 substrate shows that anisotropy of SrRuO3 is likely
intrinsically weak. A sample of ∼ 20 nm in thickness has a RRR of around 20. One can see from the 5 K data (Fig.
S4) that there is no qualitative difference between the two directions. Both conductivities are Drude-like in shape
with slightly different scattering rates.
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IV. FRACTIONAL FUNCTIONAL FORM

Previous work5 on the THz conductivity of SrRuO3 used an expression of the form

σ(ω) =
A

(1/τ − iω)α
(3)

to fit the conductivity data using α = 0.4. Although excellent fits were obtained, this was a radical proposal
considering the implications it would have on the link between ac and dc electrical transport measurements. Moreover
its microscopic basis in the context of SrRuO3 was not clear. In our case, we cannot simultaneously fit both the
magnitude and phase of the measured conductivity using this functional form. This can be readily seen from Fig.
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FIG. 5: Fits of 5K conductivity data to Eq. 3. (a) and (b). A good fit to the magnitude is possible only if the fit to the phase
is disregarded. Here 1/τ = 80.9 GHz and α = 0.853. (c) and (d) A good fit to the magnitude is possible only if the fit to the
magnitude is disregarded. Here 1/τ = 0.189 THz and α = 0.946. (e) A fit by converting to real and parts of the fractional
power formula, with equal weights assigned to either part. Here 1/τ = 72.8 GHz and α = 0.803.

S5. A good fit to the magnitude is possible only if the fit to the phase is disregarded (Fig. S5(a-b)). In this case 1/τ
= 80.9 GHz and α = 0.853. A good fit to the phase is possible only if the magnitude is disregarded (Fig. S5(c-d)).
In this case 1/τ = 0.189 THz and α = 0.946. An alternative fit is done by converting the fractional formula from
magnitude and phase to the real and imaginary basis, and assigning equal weight to them (Fig. S5(e)). In this case,
1/τ = 72.8 GHz and α = 0.803. Note that in none of these cases is the α exponent close to the 0.4 found in Ref.5.
α = 1 is the Drude limit.
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The inset of (b) shows the frequency-averaged m∗ as a function of temperature up to 50 K.

V. COMPLEX RESISTIVITY AND THE EXTENDED DRUDE ANALYSIS

Fig. S6 shows real and imaginary parts of complex optical resistivity calculated from inverting the conductivity. The
real part of complex resistivity is plotted along with dc resistivity. The real part of resistivity ρ1 at THz frequencies has
only a weak frequency dependence, which is consistent with the scale of the relative contributions of temperature and
frequency dependent scattering from the Gurzhi scaling6. At the lowest measured frequencies and low temperatures,
there is a small drop in resistivity to the dc values, owing to the narrower Drude term. Nevertheless, we can still
try to set bounds on the size of the ω2 dependence to obtain an upper bound for the value of coefficient A from the
general scaling relation ρ1(T, ω) = ρee0 (T )[1 + (~ω)2/bπ2(kBT )2] where ρee0 (T ) mentioned in the main text. In Fig.
S7 we show the close up view of ρ1 as plotted in Fig. 4(a) of the manuscript. The quadratic fits are presented as
dashed black lines for different temperatures. Of the positive values, b = 2.3 for 5 K, b = 5.5 for 20 K, and b = 7.7
for 30 K, respectively. This is a size roughly consistent with Gurzhi scaling where b = 4 (the assumption that two
particle Umklapp scattering dominates transport). Please note that the Gurzhi scaling implies that T dependent
scattering will be larger than ω scattering and therefore at low frequencies disorder scattering will dominate over
frequency dependent effects. This supports the notion that the scattering rate of each individual Drude feature is
mostly frequency independent.

We performed extended Drude analysis, specifically to estimate its mass enhancement. The result is shown in the
inset of Fig. S6 (b). Rewriting the complex conductivity σ(ω) in terms of a complex memory function, one obtains

σ(ω) = ε0ω
2
p

1

1/τ(ω)− iω[1 + λ(ω)]
(4)

where, adopting Boltzmann-style terminology, 1/τ(ω) and 1 + λ(ω) describe a frequency dependent scattering rate
and mass enhancement (m∗/mb) of the optical excitations due to many-body interactions7. Here ωp/2π = 25, 000



6

 !

 "

!

"

#
$
%&
%'
&(
&'
)
* 

 
*+
,
!
*-
.
/

 01 02"03"04"0"

56$7,$8-)*!  !"*+9:;/

 !" #$#%# #&'#% #&$#%# #('#%
#($#%# #)'#%# #*+,-

#

FIG. 7: Real part of the complex resistivityρ1(ω) and tentative quadratic fitting.

cm−1 is the plasma frequency from Ref.8 and mb is the effective band mass9. Equivalently, the imaginary part of
the resistivity ρ2 (Fig. S6(b)), can be used to estimate the magnitude of the effective mass by taking the slope of ρ2
multiplied by −ε0ω2

p (inset of Fig. S6(b)).
’

VI. ATTEMPTS AT MICROWAVE SPECTROSCOPY MEASUREMENTS

In the technique of Corbino broadband microwave spectroscopy12, a coax cable connected to a network analyzer
is terminated by a thin film sample (via a customized adapter that allows the sample to be press fit onto the end of
the coax). Complex reflection coefficients are measured at each frequency of a scan, from which impedance can be
calculated from the matching equations. A linear calibration scheme is used to obtain the actual reflection coefficient
from the sample alone. In the thin film limit impedance can be inverted to obtain conductance. This technique is
most sensitive when measuring samples that have impedances close to 50 Ω.

We attempted to measure thin films of SrRuO3 in this technique’s 10s of MHz to approximately 10 GHz range in
order to partially fill in the missing frequency range between dc and the low end of the TDTS experiments. However
these experiments proved to be very challenging. The issue is that the films are so highly conductive (impedances
near 0.4 Ω) that their reflection coefficients are close to -1 making them hard to distinguish from a perfect conductor.
In order to enhance the impedance of the highly conductive sample so that the reflection coefficient is farther from
-1, the film is patterned into a thin strip geometry13. First a Au (200 nm)/Ti (5 nm) contact was evaporated on
the sample using a macroscopic donut shaped (or Corbino) mask. Then the entire film was spin coated with about 2
microns of positive photo-resist and baked at 120◦ for 1 min to harden it. Afterwards, a thin strip mask, which was
actually a thin Copper wire was attached to a glass slide (could be a micro-structure on photo mask), was aligned
and pressed against the center of the donut shaped Au/Ti structure, and exposed to UV. The film was developed
and rinsed with DI water, and re-baked for 1 min at 120◦, so that a a thin strip ( 70 microns) of photo-resist was left
on top of the sample. This strip made of photo-resist is then used as as a mask for Ar milling. The impedance was
enhanced from this thin strip patterning by a factor of 22. Through this procedure, we attempted to measure the
conductivity of thin strip samples.

Unfortunately, we believe that these efforts to measure the conductivity in this range largely failed. We always
found a large and unexplained mismatch between THz and microwave data. Higher temperature (> 30 K) data was
used as a substrate correction12, assuming that the conductivity has a scattering rate much greater than 10 GHz
according to extrapolation from THz data. However, it was found that the low temperature conductivity (especially
< 20 K) exhibited a narrow Drude-like peak feature that was only of the order of a few GHz wide, which is much
less than simple extrapolations of the THz to the dc conductivity. This result would imply a finite frequency peak
in conductivity in the 50 GHz-150 GHz range. Although in principle this is possible, this would violate any simple
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picture of extrapolating the THz data to the dc data and it is hard to envision any scenario in which this occurs.
Moreover, such a scenario would give total spectral that that was strongly nonconserved as a function of temperature.
Therefore we believe that this finite frequency peak is an artifact of still having a very low impedance and therefore
considerable experimental uncertainty. Therefore, we could not reliably obtain the microwave conductivity, partly
because the film is highly conductive and that contact impedance is difficult to model.

VII. MODELING OF A TWO-BAND SYSTEM WITH PARABOLIC DISPERSION

The phenomenology of the crossover from two Drude peak-like conductivity at low temperature to a single Drude
peak at higher temperature can be captured through a simple semiclassical model that captures the momentum non-
conserving intraband scattering of individual bands and also the momentum conserving interband scattering between
bands.

For a single-band Drude metal, the equation of motion is

− iωmv = qE −mv/τ, (5)

in which −iω comes from the time derivative of the velocity, q is the charge (which can be e or −e) and τ is the
average relaxation time of the velocity (proportional to current).

The velocity from this expression is then

v =
qEτ

m

1

1− iωτ
, (6)

hence the complex ac Drude conductivity is

σDr =
nq2τ

m

1

1− iωτ
. (7)

For a two-band system with parabolic dispersion, as discussed by Gantmakher14, and Maslov and Chubukov15, one
can write down equations of motion that have a coupling between conduction channels due to interband electronic
scattering. This interband non-current conserving (but momentum conserving) electron-electron scattering is rep-
resented with a friction coefficient η. This term has the effect of equalizing velocities between different conduction
channels. The relaxation times τ1 and τ2, for the two bands take into account all non-momentum conserving (intra-
band and interband) scattering such as that that arises from disorder and umklapp scattering. Note that for parabolic
bands, intraband momentum conserving electron-electron scattering, does not enter the equations of motion. The
resulting expressions are

−iωm1v1 = q1E −m1v1/τ1 − ηn2(v1 − v2),

−iωm2v2 = q2E −m2v2/τ2 − ηn1(v2 − v1).
(8)

These equations of motion result in interesting frequency dependent behavior, various limits of which are discussed
in Ref.15. In the event that the metal is perfectly compensated q1 = −q2 and n1 = n2 then material is described by a
single Drude-like peak at all frequencies. With excess of one charge species and even small momentum non-conserving
scattering, then a two Drude structure appears with peaks whose widths are complicated functions of τ1, τ2, and η.

The issue we wish to address here is whether or not the conductivity given by these expressions is always given by
a two Drude functional form (with of course highly effective scattering rates and densities). We find that it is, but
that in various limiting cases and effective single Drude description suffices.

We define the following parameters and rewrite the equations for simplicity.

−iωm1v1 = q1E − α1v1 − α2v2,

−iωm2v2 = q2E − β1v1 − β2v2,
(9)

in which

α1 ≡ m1/τ1 + ηn2

α2 ≡ −ηn2
β1 ≡ −ηn1

β2 ≡ m2/τ2 + ηn1.

(10)
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Now let us make a new set of two equations which are independent linear combinations of the equations in 9. These
will be equivalent to the Eqs. 9, and so are their solutions (see below for the constraints). Generically, one can use
two different real dimensionless coefficients c1,2. One multiplies the first equation by c1 and adds it to the second,
then multiplies the second equation by c2 and adds it to the first. The new equations are

−iω(c1m1v1 +m2v2) = (c1q1 + q2)E − (c1α1 + β1)v1 − (c1α2 + β2)v2,

−iω(c2m1v1 +m2v2) = (c2q1 + q2)E − (c2α1 + β1)v1 − (c2α2 + β2)v2.
(11)

Note that the equivalency stated above necessitates constraints which are implicit in Eqs. 9 and 11. The Drude
equation of motion (Eq. 5) is for a single particle and does not mention the density of electrons (which is proportional
to the spectral weight). Moreover, the mass and charge of the carrier can be scaled by a common factor and the
expression will stay the same. For the equation of motion, only the relaxation time τ is an essential parameter. A
similar aspect exists for the two band coupled case. Transforming Eq. 9 to Eq. 11 requires implicitly, at least, that
the spectral weight (or total charge) is unchanged.

Up to this point, we have not decoupled Eq. 9 and the expression for conductivity is not obvious. Nevertheless,
we ask the following question: are there a set of coefficients, c1 and c2 that can put both equations in Eq. 11, in the
same form as Eq. 5. If so, this implies that the complex ac conductivity can be written as a sum of two Drude-like
terms. Here by “the same form”, we mean that on the left-hand side of the equation, one has −iω times a quantity
that has the dimension of momentum, and on the right hand side of the equation, besides a charge times E term, one
has the same momentum-like quantity, divided by a constant which only depends on material properties (specifically
n1, n2, m1, m2, τ1, τ2, and η), but not on v1, v2, E, or ω. If there exists such c1 and c2, we have two equations
which we know are equivalent to Eq. 9 and we know the solution (i.e. the form of conductivity) of. If c1 and
c2 are different, these two equations are also independent of each other, i.e. the momentum-like quantities are not
equal, (c1m1v1 +m2v2) 6= (c2m1v1 +m2v2). Each of these momentum-like quantities contribute to the current, and
therefore to conductivity. Therefore, the form of conductivity can be written as a sum of two Drude terms, although
the spectral weight of either one is to be determined by conservation laws other than Eq. 11 itself. Apparently, there
are numerous other arbitrary combinations of c1 and c2, but they do not decouple Eq. 9 in this manner and can not
be solved independent of each other (although they are all equivalent equations to Eq. 9).

Now we seek such coefficients. If we find them, according to our argument above, we can write the conductivity
as a sum of two Drude terms. In Eq. 5, the terms that includes the variable v are mv (momentum) on the left-hand
side and mv/τ on the right-hand side. These two quantities differ by a factor which is τ and independent of v. Here
in mapping to Eq. 5, we divide the corresponding quantities in the two equations of Eq. 11, respectively, which gives
us

c1m1v1 +m2v2
(c1α1 + β1)v1 + (c1α2 + β2)v2

and
c2m1v1 +m2v2

(c2α2 + β2)v1 + (c2α2 + β2)v2
(12)

Note that v1 and v2 depend on the steady state of the system and are independent variables. In general, the
division will not be a constant, meaning they depend on v1 and v2, or in other words, the steady state of the
system. Nevertheless, there is a particular situation, in which the division will cancel v1 and v2 in the numerator
and denominator. The situation is when the coefficients for v1 and v2 have the same ratio in the numerator and
denominator:

c1m1

c1α1 + β1
=

m2

c1α2 + β2
and

c2m1

c2α1 + β1
=

m2

c2α2 + β2
. (13)

These ratios correspond to the relaxation time as in Eq. 5, (here we denote that τ for c1 and c2 as τa and τb,
respectively, see Eq.16 below). This gives rise to a quadratic equation which have two solutions which correspond to
two kinetic modes (Drude peaks)

m1α2c
2
1,or 2 + (m1β2 −m2α1)c1,or 2 − β1m2 = 0. (14)

The solution for the multipliers c is (one can show that the square root is always real, see below)

c1,2 =
m2α1 −m1β2 ±

√
(m1β2 −m2α1)2 + 4m1α2β1m2

2m1α2

=
m1m2(1/τ1 − 1/τ2) + η(m2n2 −m1n1)±

√
(η(m1n1 −m2n2) +m1m2(1/τ1 − 1/τ2))2 + 4η2m1m2n1n2
−2ηm1n2

(15)

Here we have found a particular choice of c1 and c2 which make the two quantities in Eq. 12 with no dependence on
v1 and v2, which means if we plug the expressions in Eq. 15 back to Eq. 12, we obtain constants. That means the
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FIG. 8: Simulation of conductivity of the Maslov-Chubukov model using the parameters in the legends of each plot. The
frequency and conductivity are in arbitrary units. The black dashed lines are two-Drude fits. One can see that as the interband
electron-scattering increases then the relative contribution of the second peak decreases.

coefficients in Eq. 15 makes Eq. 11 correspond with the form of Eq. 5, and therefore we can write the solutions out
since the Drude model solution is known (Eq. 7). Since this choice of c1 and c2 makes the two equations in Eq. 11
solvable separately without the need of the other equation, the equations in Eq. 9 are decoupled in this fashion.

Given the above real coefficients that do not depend on v1, or v2, one would be able to know the two relaxation
times by plugging them back into Eq. 13, which we label as τa and τb, if using c1 and c2, respectively.

τa =
c1m1

c1α1 + β1
, τb =

c2m1

c2α1 + β1
(16)

The charge of newly grouped carriers can just be defined as

qa = c1q1 + q2, qb = c2q1 + q2. (17)

The definition of the new masses ma,b and new carrier densities na,b should be in accordance with the conservation
of total charge, total mass, and total momentum (based on the momemtum found in Eq. 13)

naqa + nbqb = n1q1 + n2q2

nama + nbmb = n1m1 + n2m2

na(c1m1v1 +m2v2) + nb(c2m1v1 +m2v2) = n1m1v1 + n2m2v2.

(18)

The last equation of the three requires the coefficients for v1 and v2 to be equal since v1 and v2 depends on the steady
state the system is in, and thus the following two equations.

nac1m1 + nbc2m1 = n1m1

nam2 + nbm2 = n2m2.
(19)
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Through solving the above equations (which are obviously independent), one could obtain physically consistent effec-
tive masses, and carrier densities, for the two Drude terms. Specifically, one could use Eq. 19 to obtain na and nb
and plug into the first two equations of Eq. 18 to calculate ma and mb. Note that the conductivity depends on the
ratio of n/m which means the choice for n and m is not unique. Here we have made the choice in Eq. 17 but in fact,
the equations in Eq. 11 could be divided by any real constant, and therefore the definition of charge can be scaled
up to a constant. But this does not change either conductivity or the scattering rate, or any physically measurable
quantities.

Now, let us examine the scattering rates of the two Drude peaks in Eq. 13. The question is, if assuming all three
scattering rates, 1/τ1, 1/τ2 and 1/τee (proportional to η) depends on temperature as T2 (two-body scattering), do
the two phenomological scattering rates 1/τa and 1/τb approximately scale as T2? It is evident that all coefficients
α1, β1, α2, and β2 scale as T2 (at least in a certain temperature range where neither disorder nor phonon scattering
dominates). Also note that c1,2 are dimensionless constants which do not depend on temperature. Therefore, 1/τa
and 1/τb according to the expression in Eq. 13, will scale as T 2. Nevertheless, with disorder scattering (say at
very low temperatures), the constant term in the scattering rate, can be greater than T 2 and the result will be
more complicated. Also, the mass and Fermi velocity of the two bands can be different, so the general temperature
dependence does not need to be T 2, depending on the details of Fermi velocity, and electronic screening, etc.

What we have shown here is that despite the complicated lineshape given by the model in Refs.14,15, it can always
be decomposed into two Lorentzians. We demonstrate this in Fig. 8, where we show simulation of the model and a
two-Drude model fitting. It can be seen that over the wide range of parameters demonstrated, a two-Drude model fits
simultaneously the real and imaginary parts of the conductivity. In quite close correspondence to our data one can see
that in the limit where the interband scattering is small (e.g. low temperatures), then the spectra are well-described
by a two Drude fit. However at least for a situation close to compensation, the spectral weight of one of the these
contributions gets smaller and smaller as the electron-electron interband scattering is increased (see Fig. 8(a-c)). For
the compensated case16,17, one can understand this in that for strong enough electron-electron scattering then the
two otherwise independent channels are locked into a single effective one. See Fig. 8(d).

1 H. P. Nair, Y. Liu, J. P. Ruf, N. J. Schreiber, S.-L. Shang, D. J. Baek, B. H. Goodge, L. F. Kourkoutis, Z.-K. Liu, K. M.
Shen, et al., APL Materials 6, 046101 (2018).

2 D. B. Kacedon, R. A. Rao, and C. B. Eom, Applied Physics Letters 71, 1724 (1997).
3 F. Chu, Q. Jia, G. Landrum, X. Wu, M. Hawley, and T. Mitchell, Journal of Electronic Materials 25, 1754 (1996), ISSN

0361-5235.
4 A. Sushkov, G. Jenkins, D. Schmadel, N. Butch, J. Paglione, and H. Drew, Phys. Rev. B 82, 125110 (2010).
5 J. S. Dodge, C. P. Weber, J. Corson, J. Orenstein, Z. Schlesinger, J. W. Reiner, and M. R. Beasley, Phys. Rev. Lett. 85,

4932 (2000).
6 R. Gurzhi, Sov. Phys. JETP 8, 673 (1959).
7 A. V. Puchkov, D. N. Basov, and T. Timusk, Journal of Physics: Condensed Matter 8, 10049 (1996).
8 P. Kostic, Y. Okada, N. C. Collins, Z. Schlesinger, J. W. Reiner, L. Klein, A. Kapitulnik, T. H. Geballe, and M. R. Beasley,

Phys. Rev. Lett. 81, 2498 (1998).
9 Note that this is a slightly smaller value than the 29100 cm−1 predicted from band structure calculations10,11.

10 I. I. Mazin and D. J. Singh, Phys. Rev. B 56, 2556 (1997).
11 I. I. Mazin and D. J. Singh, Phys. Rev. B 73, 189903 (2006).
12 W. Liu, Broadband microwave measurements of two dimensional quantum matter (PhD thesis, The Johns Hopkins University,

2013).
13 M. Scheffler, S. Kilic, and M. Dressel, Review of Scientific Instruments 78, 086106 (2007).
14 V. Gantmakher and Y. Levinson, Modern problems in condensed matter sciences Vol. 19: Carrier scattering in metals and

semiconductors (Elsevier–North-Holland, 1987).
15 D. L. Maslov and A. V. Chubukov, Reports on Progress in Physics 80, 026503 (2016).
16 P. F. Maldague and C. A. Kukkonen, Physical Review B 19, 6172 (1979).
17 W. Baber, Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences 158, 383 (1937).


	junk.pdf
	Experimental Details
	L determination
	Optical anisotropy
	Fractional functional form
	Complex resistivity and the extended Drude analysis
	Attempts at Microwave spectroscopy Measurements
	Modeling of a two-band system with parabolic dispersion
	References


