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ABSTRACT

The development of high-performance p-type oxides with high hole mobility and a wide bandgap is critical for the applications of metal
oxide semiconductors in vertically integrated CMOS devices [Salahuddin et al., Nat. Electron. 1, 442 (2018)]. Sn2+-based oxides such as
SnO and K2Sn2O3 have recently been proposed as high-mobility p-type oxides due to their relatively low effective hole masses, which result
from delocalized Sn s-orbital character at the valence band edge. Here, we introduce a promising ternary Sn-O-X compound, Ta2SnO6,
which exhibits strong valence band dispersion and a large bandgap. In order to evaluate the performance of this oxide as a p-type semicon-
ductor, we perform first-principles calculations of the phonon-limited room-temperature carrier mobilities in SnO, SnO2, and Ta2SnO6.
Electron relaxation time is evaluated, accounting for the scatterings from acoustic deformation potentials and polar optical phonons (POP),
within the isotropic and dispersionless approximation. At room temperature, the electron/hole mobilities in a given material (SnO, SnO2,
and Ta2SnO6) are found to be limited by POP scattering. SnO2 shows high room-temperature electron mobility of 192 cm2/(V s), while SnO
and Ta2SnO6 exhibit impressive hole mobilities, with the upper limit at 60 and 33 cm2/(V s), respectively. We find that carrier effective mass
largely accounts for the differences in mobility between these oxides with correspondingly different POP scattering rates. The theoretically
predicted intrinsic mobilities of each material will provide the upper limit to the real mobilities for their device applications. Our findings
also suggest a necessity of further investigation to identify even higher mobility p-type oxides with smaller hole effective masses.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5109265

I. INTRODUCTION

Monolithic 3D integration or vertical CMOS is considered an
attractive option for hyperscaling integrated circuits.1,2 In vertical
CMOS, multiple layers of logic circuitry and memory are vertically
stacked so as to continue the exponential increase in the density
of devices and alleviate the processing-storage communication
bottleneck.1–5 Vertical CMOS technology requires the upper layer
circuits to be processed with a controlled thermal budget so as to
not compromise the electrical quality of the lower front-end
layers.4,5 In addition, access transistors and peripheral logic

transistors in the vertically stacked memory cells should exhibit
high on-state drive current and low off-state current leakage.1

Accordingly, the channel materials for the upper layer transistors
should have a back-end-of-line (BEOL)-compatible low processing
temperature (below 400 °C), a relatively large bandgap (>1.5 eV) to
ensure ultralow current leakage, and good carrier mobility
[>150 cm2/(V s) for electrons, >100 cm2/(V s) for holes] for high
drive current.1 Semiconducting metal oxides (MO) are promising
candidates for vertical CMOS channel materials due to their ease of
synthesis at low temperature and wide bandgap.1,6,7 To date, these
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metal oxide semiconductors have been almost exclusively studied
as the transparent conducting electrodes for flexible electronics and
optoelectronics.8–11 For instance, indium tin oxide (ITO) films,
with a bandgap ∼3.75 eV, a resistivity as low as 10−4Ω cm, and
electron mobility up to 100 cm2/(V s),10 are widely used for trans-
parent electrodes in flat-panel displays and thin-film solar cells.8–13

For BEOL-compatible vertical FETs, high-mobility MO with band-
gaps exceeding 1.5 eV appear attractive for n-channel transistors in
the upper layers for applications as logic and memory access transis-
tors.1 However, most developed and commercialized oxide semicon-
ductors are limited to n-type conduction, and p-type oxides have
inferior performance due to carrier mobilities that are significantly
lower than that of their n-type counterparts.14 Developing high-
mobility p-type oxides would enable a complementary transistor sol-
ution that provides more flexibility for the design and implementa-
tion of more efficient BEOL vertical CMOS devices.

The low hole mobilities in p-type oxides originate from the
flat valence bands and the corresponding large effective mass of
holes arising from the localized oxygen 2p orbitals at the valence
band edge.15,16 Introducing extended orbital electronic states at the
valence band maximum (VBM) above the oxygen 2p-orbital would
enable the development of high-mobility p-type oxides.1 Such
extended hybrid electronic states can be derived from a metal
atom’s s orbitals and would result in a very small hole effective
mass. This effect can provide high hole mobilities since the under-
lying mechanism for high mobility of n-type oxides arises from the
same s orbitals as empty states. Tin-based oxides such as SnO and
K2Sn2O3 have recently been shown to satisfy this condition, with
the 5s orbital of Sn2+ forming the VBM.16 The electronic band
structures of SnO and K2Sn2O3 have been calculated confirming
the large band dispersion at the VBM, which corresponds to
small hole effective mass values.1,16 However, the bandgap of SnO
(∼0.6 eV) is too small for practical p-type oxide devices, and the
marginal phase stability of K2Sn2O3

16 can be a serious issue leading
to K contamination of the surrounding device structures by phase
changes of K2Sn2O3→KSn2O3 + K→ Sn2O3 + 2K. Furthermore, a
design rule based simply on the carrier effective masses does not
provide quantitative mobility values, which incorporate carrier scat-
tering rates. Although the small effective mass is a key characteristic
useful for rapid screening of high hole mobility oxides, a detailed
mobility calculation is critical to obtain more accurate values of the
intrinsic mobilities and to confirm whether a candidate p-type
oxide exhibits high hole mobility.

Recent electrical characterizations of p-type SnO have
shown room-temperature carrier mobility in the range of
0.1–20 cm2/(V s),6,17,18 values that are uncharacteristically low
for a high-mobility p-type oxide. It is not well understood if the
poor hole mobility can be improved for higher quality SnO
samples. A crystalline phase-based mobility simulation does
not necessarily represent the behavior of a practical device due
to the polycrystal or amorphous nature of p-type oxides where
more significant scattering mechanisms such as grain boundary
scattering and surface scattering19,20 are present. Despite this, the
phonon-limited intrinsic mobilities provide an upper limit to the
real values and help guide the material selection process. In order
to design a p-type oxide with high mobility and stability, we started
by varying the composition of K2Sn2O3 to search for complex

Sn-O-X ternary oxides with higher phase stability. Through this
search process, we identified a promising candidate, Ta2SnO6,
which is stoichiometrically equivalent to Ta2O5 + SnO. Compared
to K2Sn2O3 =K2O + 2SnO, Ta2O5 is thermodynamically more stable
than K2O and also compatible with conventional device processing.
Ta2SnO6 also exhibits a larger bandgap (>2 eV) than SnO as well as
strong valence band dispersion, which are all promising characteristics.
It is noted that another Sn2+-based Sn-O-Ta ternary oxide Ta2Sn2O7

has recently been investigated as a p-type oxide for its VBM contain-
ing Sn-5s orbital contribution.21 However, Ta2Sn2O7 is not promis-
ing because density functional theory (DFT) calculations show that
its valence band edge is very flat and that Sn2Ta2O7 is not thermody-
namically most stable in the Sn-O-Ta ternary phase space.22

In this work, we report the calculations of both electron and
hole mobilities in tin-based oxides including p-type SnO and
Ta2SnO6 and n-type SnO2. We study the phonon-limited intrinsic
mobility values in these oxides, given that phonon scattering is
the intrinsic scattering mechanism and often dominates at room
temperature.23 We formulate the scattering rate in the presence of
multiple phonon modes, which we then use to determine carrier
mobility. Our calculations show that SnO2 is a good n-type semi-
conductor with high electron mobility, whereas p-type SnO and
Ta2SnO6 exhibit slightly lower hole mobilities. The theoretically
predicted intrinsic mobilities for SnO, Ta2SnO6, and SnO2 provide
the upper limit to the real mobilities for their device applications.
Our results indicate a necessity of further investigation to identify
p-type oxides with even higher mobility.

II. COMPUTATIONAL METHODOLOGY

The density functional theory (DFT) calculations were per-
formed by using Vienna ab initio Simulation Package (VASP)24,25

using projected augmented wave (PAW)26,27 pseudopotentials. The
Perdew-Burke-Ernzerhof generalized gradient approximation
(GGA-PBE) functional was employed to depict the exchange-
correlation potential energy. For all calculations, an energy cutoff
of 520 eV was adopted for plane wave basis expansion. Brillouin
zone integrations were performed based on the Gamma-centered
Monkhorst-Pack k-point mesh, with sampling density varying with
lattice constants to ensure the desired accuracy. Structures were
relaxed using the conjugate gradient (CG) method with the conver-
gence criterion of the force on each atom less than 0.02 eV/Å. The
converged energy criterion is 10−5 eV for electronic minimization.
The phonon frequencies at the Gamma point were calculated by
using density functional perturbation theory (DFPT) as implemented
in VASP. For electron-phonon coupling matrix elements evaluation,
the phonopy code28 was used to extract the force constant matrix
from Hellmann–Feynman forces and to subsequently calculate the
eigenfrequencies and eigendisplacements. Since the carrier mobilities
are sensitive to the electronic structures, especially effective masses,
we used the Heyd-Scuseria-Ernzerhof (HSE)29 hybrid functional to
obtain an accurate evaluation of effective masses and bandgaps. The
screening parameter in HSE was fixed at 0.2 Å−1 (HSE06), while the
fraction of Hartree-Fock exchange (α) was varied in order to repro-
duce the known lattice constants and bandgaps. This fraction was
finally tuned at α = 0.32 for SnO2 and α = 0.25 for SnO, which yields
consistent lattice constants and bandgaps when compared with
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experiments (Table I). The bandgap of SnO predicted in this work
stands somewhat lower than that in the reference work (0.84 eV)30

because the bandgap of SnO is sensitive to the interlayer distance
between SnO layers and the optimized c-axis lattice constant (4.95 Å,
agreeing well with the experimental value 4.84 Å) is slightly smaller
compared to the reference (5.03 Å).30

III. RESULTS AND DISCUSSION

A. Mobility theory

In the Boltzmann transport theory, the drift mobility is
connected to conductivity through μ ¼ σ=(ne), where σ is the con-
ductivity, n is the carrier density, and e is the electron charge.
Within the relaxation time approximation (RTA), the mobility is
given by the well-known Drude expression,

μ ¼ ehhτkii
m*

, (1)

where τk is the energy-dependent relaxation time and hh�ii indi-
cates the energy-weighted average relaxation time and is defined as

hhτkii ¼
Ð
dEkD(Ek)f (Ek)τ(Ek)EkÐ

dEkD(Ek)f (Ek)Ek
, (2)

where E is the carrier energy, D(E) is the density of states (DOS),
f (E) ¼ 1={exp[(E � EF)=kT]þ 1} is the equilibrium distribution
given by the Fermi-Dirac function, and EF is the Fermi level. When
the system is nondegenerate, the Fermi-Dirac distribution is usually
approximated by the Boltzmann distribution. We will see that only
electrons at the conduction band minimum (CBM) and holes at
the VBM are relevant to the averaged relaxation time. In relatively
pure crystalline samples with negligible impurities, the dominant
scattering mechanism is electron-phonon scattering. In this case,
the relaxation time, or scattering rate, is determined through
Fermi’s golden rule,34

1
τk

¼ 2π
�h

X
λ

ð
BZ

dqjgλq j
2
δ(Eqþk � Eq + �hω)

Nq

Nq þ 1

� �
: (3)

Here, �h is the reduced Planck constant, λ labels the phonon
mode, gλq is the matrix element for electron-phonon coupling, Nq

is the phonon occupation number that is given by the
Bose-Einstein distribution function, and upper and lower
symbols represent absorption and emission, respectively. The
Fermi-Dirac distribution for electrons does not appear in Eq. (3)
since the carrier scattering rates will not depend on the electron
distribution function when the low-field transport and isotropic

scattering are considered.35 Note that in this evaluation model,
only the intraband scattering has been taken into account,
since in the nondegenerate case and low-field transport condi-
tion, the phonon-induced potentials are not sufficiently strong
to trigger the interband process. Finally, if more than one scatter-
ing mechanism exist, the total mobility, μtot , is given by
Matthiessen’s rule,

1
μtot

¼ 1
μI

þ 1
μII

þ � � � , (4)

where μI and μII represent the mobilities by the individual scat-
tering mechanism.

B. Acoustic deformation potential (ADP) scattering

The acoustic deformation potential (ADP) scattering comes
from the local changes of the crystal potential associated with a
lattice vibration due to an acoustic phonon. This scattering is domi-
nant in nonpolar semiconductors such as Si and graphene. In the
presence of elastic scattering approximation, the relaxation time
associated with the ADP scattering is given by35

1
τk

¼ πD2
AkBT
�h�Cl

D(Ek), (5)

where T is the absolute temperature, �Cl ¼ (C11 þ C22 þ C33)=3
is the average longitudinal elastic constant, and DA is the acoustic
deformation potential constant.36 In the present work, the elastic
constant is evaluated through the use of stress-strain relation-
ships,37 Cii ¼ 1

V
@2E
@ε2i

���
0
, where V is the cell volume at equilibrium, E

is the total energy, and εi is the strain along the ith axis. By qua-
dratically fitting the total energy with respect to strain, one can
obtain the elastic constant. The deformation potential constant is
defined as36 δE ¼ DA

δa
a , where δE is the CBM or VBM change

due to the uniaxial lattice deformation δa/a, where a is the lattice
constant. Based on this definition, the deformation potential
constant DA can be calculated as35 DA ¼ @E

@εV

���
0
, where εV is the

volumetric strain. By linearly fitting the total energy with respect
to volume strain, one can obtain the deformation potential cons-
tant. In the case of parabolic band approximation, the 3D density
of states (DOS) can be written as

D(E) ¼ 1
2π2

2m*
dos

�h2

� �3
2

E
1
2, (6)

where m*
dos¼(m*

xm
*
ym

*
z)

1=3
is the density of states’ effective mass.

Combining Eqs. (2), (5), and (6), one obtains the ADP-limited

TABLE I. The HSE mixing parameter α, calculated lattice constants, and bandgaps in SnO, SnO2, and Ta2SnO6. Experimental data are shown in parentheses.

Crystal α a (Å) b (Å) c (Å) Eg (eV)

SnO Tetragonal 0.25 3.79 (3.80)31 3.79 (3.80) 4.95 (4.84) 0.6
SnO2 Tetragonal 0.32 4.74 (4.74)32 4.74 (4.74) 3.18 (3.19) 3.6 (3.6–3.7)33

Ta2SnO6 Monoclinic 0.25 8.97 8.97 5.53 3.0
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mobility,38

μα ¼ 2
ffiffiffiffiffi
2π

p
e�Cl�h

4

3(kBT)
3=2D2

Am
*
dos

3=2m*
cond,α

, (7)

where m*
cond is the conductivity effective mass and is equal to the

band effective mass and α is the Cartesian direction.
The computed elastic constant, deformation potential con-

stants, and ADP mobility for SnO, SnO2, and Ta2SnO6 are listed
in Table II. Our calculated elastic constants for SnO2 and hole
effective masses for SnO are close to other calculation works.39–41

For both p-type SnO and n-type SnO2, the electron effective
masses are lower than the hole effective masses. The asymmetry
of effective masses between electrons and holes in SnO and SnO2

accounts for the large difference of mobilities between the two
types of carriers, as can be seen in Table II. At a low temperature
(T < 100 K) where optical phonon scattering is suppressed, ADP
scattering becomes a dominant factor in determining the intrinsic
mobility. However, since there are no reports on low-temperature
mobilities for SnO or SnO2, we cannot validate our calculation
results by comparing with experimental data. When compared
with other nonpolar semiconductors such as Si where the intrin-
sic mobility is limited by ADP, SnO2 shows both good electron
mobility and hole mobility, while SnO exhibits a much lower hole
mobility, though it even has higher electron mobility. Ta2SnO6

shows both satisfying electron mobility and hole mobility but
with strong anisotropy along different directions due to the highly
anisotropic effective mass values. Nevertheless, compared with
ADP, POP scattering is more important in determining the room-
temperature mobility for polar crystals and will be discussed in
the next part.

C. Polar optical phonon scattering

Polar crystals contain two or more atoms in a unit cell with
nonzero Born effective charge tensors. Lattice vibrations associated
with polar optical phonons (POP) at a long wavelength give rise to
macroscopic electric fields that can strongly scatter electrons or
holes, which is described by the so-called Fröhlich interaction. In
the Fröhlich model, the electron-transverse optical (TO) phonon
coupling is neglected and the electron-longitudinal optical (LO)

phonon coupling matrix element is given by42

gq ¼ i
jqj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2�hωLO

2ε0Ω
1
κ1

� 1
κ0

� �s
, (8)

where q is the phonon wavevector, ε0 is the vacuum permittivity, Ω
is the volume of the unit cell, and κ0 and κ1 are the static and
high-frequency dielectric constants, respectively. When a disper-
sionless phonon is assumed, that is, the phonon frequency ωLO is
independent of q, the scattering rate takes the form35

1
τk

¼
e2ωLO

1
κ1

� 1
κ0

� �
4πε0�h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ek=m*

p Nω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �hωLO

Ek

s
þ (Nωþ 1)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �hωLO

Ek

s"

��hωLONω

Ek
sinh�1 �hωLO

Ek

� �1=2

þ�hωLO(Nωþ 1)
Ek

sinh�1 �hωLO
Ek

� 1

� �1=2
#
, (9)

where Nω is the occupation number of phonons with frequency ω.
For details about the derivation of this equation, we refer the
readers to Ref. 35. The Fröhlich model assumes an isotropic dielec-
tric medium and only one polar LO mode that couples to the carri-
ers. However, such conditions are clearly not satisfied in the case of
SnO, SnO2, and Ta2SnO6 where more than one LO modes exist. To
incorporate crystal anisotropy and multiple LO modes scattering,
we use the Vogl model,43 which provides a more accurate descrip-
tion of electron-phonon coupling. The Vogl model has been widely
used for describing the electron-optical phonon coupling in polar
crystals.34,43–45 Similar to the Fröhlich model, the key ingredient in
the Vogl model is that it relates the perturbing potential induced by
the optical phonons to the dielectric constants and the Born
effective charges, both of which can be computed using DFT. In
the Vogl model, the coupling matrix element is given by34,44

gλq ¼ i
4π
Ω

e2

4πε0

X
j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�h

2Mjωλ
q

s
q �Z*

j � eλjq
q �κ1 �q , (10)

where Mj is the atomic mass of jth atom, Z*
j is the born effective

charge tensor, κ1 is the high-frequency dielectric constant tensor,

TABLE II. The elastic constants Cl, acoustic deformation potential constants DA, carrier effective masses m*, and ADP-limited mobilities μADP in SnO, SnO2, and Ta2SnO6.
Values form other calculation works are shown in parentheses.

System

Cl (GPa)

DA (eV)

m* (m0) μADP (cm2/V s)

x y z ave x y z dos x y z

SnO e 96 96 36 76 3.51 0.25 0.25 0.43 0.30 9308 9308 5411
h 4.33 2.98 (2.80)39 2.98 (2.80) 0.64 (0.59) 1.78 35 35 164

SnO2 e 210 (261)40 210 (261) 377 (472) 266 8.17 0.26 (0.26)41 0.26 (0.26) 0.21 (0.20) 0.24 7954 7954 9848
h 2.06 1.27 1.27 1.60 1.37 1899 1899 1508

Ta2SnO6 e 187 192 199 193 1.35 2.20 31.6 0.83 3.86 392 27 1040
h 2.80 8.4 0.72 0.98 1.81 74 868 638
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and eλjq is the eigendisplacement of atom j in phonon mode λ and
is normalized according to

P
j e

λ0
jq � eλjq ¼ δλ0λ. Note that the expres-

sion for the coupling matrix element shown here differs from that
by Verdi and Giustino,45 and in the latter, there is an extra integra-
tion term that can be simplified and reduced to ours when only the
polar couplings are taken into account. The simplified expression is
adopted since it can enable the scattering rates to be expressed ana-
lytically. The Vogl model here includes the directional dependence
of the electron-phonon coupling in the sense that the coupling
strength is proportional to the projection of the net dipole strength
Z*
j � eλjq along the direction of q. The Vogl model also implies that

the transverse optical (TO) phonon modes do not couple to the
carriers since the q �Z*

j � eλjq term becomes zero in those cases. In
general, the anisotropy of coupling strength is determined by the
combined symmetry of both phonon and electronic states.
Incorporating such anisotropy for the calculation of scattering rate
requires a numerical integration indicated by Eq. (3), and often a
Wannier–Fourier (WF)46 interpolation is needed to obtain a very
fine resolution of the matrix elements for achieving convergence.
Such scheme, however, is beyond the scope of this study. In this
work, we will instead consider an “isotropic approximation” by
approximating the anisotropic electron-phonon coupling matrix
elements with appropriate q-space angle-averaged quantities. This
is implemented by the expression

hjgλjqjj
2iθ,w ¼

1
4π

ð1
�1

d(cosθ)
ð2π
0

dwjgλq j
2
, (11)

where the brackets h�iθ,w denote averaging over the azimuthal angle
θ and polar angle w, performed numerically.

In addition, the Born effective charge is related with the static
and high-frequency dielectric constants through47

1
κ0

¼ 1
κ1

� lim
q!0

1
κ21

4π
Ω

e2

4πε0

X
λ

X
j

Z*
j � eλjqffiffiffiffiffiffi
Mj

p
ωλ
q

 !2

, (12)

where we have used the notations (κ0)
�1 ¼ 1=κ0 and

(κ1)�1 ¼ 1=κ1. As mentioned previously, due to the anisotropy of
lattice vibration in SnO, SnO2, and Ta2SnO6, the static dielectric
constants are direction dependent. To simplify this, here, we
adopted an isotropic approximation and a spatially averaged dielec-
tric constant would be used, i.e., κ0 ¼ (κ0,xx þ κ0,yy þ κ0,zz)=3,
where κ0,xx , κ0,yy , and κ0,zz are static dielectric constant along three
Cartesian axes, respectively. The high-frequency dielectric con-
stants, on the other hand, are usually nearly isotropic since the
dielectric constants at high frequency are mainly contributed by
electrons, as lattice ions cannot respond at high frequency.48

Inserting Eq. (12) back into Eq. (10), we arrive at

gλq ¼ i
jqj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2�hωλ

q

2ε0Ω
1
κ1

� 1
κ0

� �
� wλ

q

s
, (13)

where wλ
q is given by

wλ
q ¼

P
j

q � Z*
j � eλjq

jqj ffiffiffiffiffiffi
Mj

p
ωλ
q

 !2

P
λ0

P
j

Z*
j � eλ

0
jqffiffiffiffiffiffi

Mj
p

ωλ0
q

 !2 : (14)

We note that in low-symmetry crystals, the longitudinal mode
or transverse mode is not exactly parallel or perpendicular to the
direction of q. If we consider the strict LO (TO) modes in which
the dipole strength Z*

j � eλjq is parallel (perpendicular) to the wave-
vector q, Eq. (14) will further reduce to

wλ
q ¼

P
j

Z*
j �eλjqffiffiffiffiffiffi
Mj

p
ωλ
q

 !2

P
λ0

P
j

Z*
j �eλ

0
jqffiffiffiffiffiffi

Mj
p

ωλ0
q

 !2 : (15)

Compared with Eq. (8), Eq. (13) shows that in the case of
multiple POP modes coupling, each mode contributes to the total
coupling strength by the weight wλ

q. We note that if there is only
one LO mode, Eq. (13) reduces correctly to the Fröhlich model in
Eq. (8). Assuming the phonons are dispersionless, one obtains the
relaxation time for multiple phonon modes scattering as

1
τk

¼
X
λ

wλ

τλk
, (16)

with wλ and τλk given by Eqs. (14) and (9), respectively.
The scattering rates can be expressed analytically when the sim-

plifications including parabolic energy bands, dispersionless optical
phonons, and isotropic phonon scattering are introduced. Without
these simplifications, scattering rates can only be evaluated by carry-
ing out a series of numerical integrals of millions of electron-phonon
coupling elements, which would be computationally very expensive.
Parabolic band approximation is a very common practice in semi-
conductor physics, and it is also the essence of the effective mass
approximation theory. For nondegenerate semiconductors under
low-field transport, carriers are occupying the conduction/valence
band edges that rationalize the parabolic band approximation. The
dispersionless approximation is also called the Einstein model, where
phonon frequency is regarded independent on the phonon wave
vector q. The simplified dispersion relation for optical modes is often
used for scattering calculations. However, the “dispersionless approx-
imation” in our model does not require that phonon mode be dis-
persionless or almost dispersionless. This is because the phonons
involved in the scattering process are those with wave vector q near
the center of the Brillouin zone due to momentum and energy con-
servation.35 Since the energies associated with the phonons are sig-
nificantly lower than those with the electrons, the final states that
electrons are scattered into cannot differ too much from the initial
states in terms of energies. This determines that within intraband
scatterings, electron momentum differences cannot be large, which
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implies that the scattering phonons are near the center of the
Brillouin zone. In this regard, we can assume their frequencies are
invariant when the wave vectors of phonons of interest only occupy
a small range near the center of the Brillouin zone in the q-space.
As for the isotropic approximation, we need to consider the direc-
tionality of both electron momentum state k and phonon wave-
vector q, as the scattering rates depends on both quantities. The
anisotropy of scattering rates due to the directionality of k turns
out to be characterized by the anisotropy of the effective mass,
and such anisotropy has already been taken into account in
our evaluation model, as shown in Eq. (9). The anisotropy of
electron-phonon coupling matrix elements arising from their q
dependence is alleviated by using an average value to approximate
those matrix elements of the spherical surface in the q-space. The
matrix elements are dumped into an averaged value and will lead
to an analytical integration, which avoids intensive computations
needed for numerical integrations.

Nevertheless, such a simplified model and the assumptions
inherent in it are subject to be substantiated. To further verify these
approximations and evaluate how accurate the model is, we have
tested our model in a wide range of compound semiconductors,
including III-V semiconductors, II-VI semiconductors, and metal
oxides. Table III lists the computed and experimental mobilities of
these compound semiconductors, with related parameters needed
for the calculation of mobilities also included. Note that all the
material parameters, including effective masses, dielectric constants,
and LO phonon frequencies, are experimental values, unless they
are not available from literature studies, and in that case, the DFT
predicted values are used instead. All of the experimental values are
measured based on the single-crystal samples. Broadly speaking,
the model gives quantitatively reasonable predictions for the mobil-
ities in these tested compounds, though with a systematic overesti-
mation when compared to the experiments (in general 1.5–2 times
of the experimental values). The overestimations may come from

the approximations assumed in the model and the ionized impurity
scattering in the real samples, and it is hard to determine which
factor is more dominant since the carrier concentrations in the
experimental samples vary with a wide range. Nonetheless, our
simulated mobilities are in fair agreement with experimental values
from the engineers’ point of view. With a simplified analytical
expression and less intensive computations, our model would be
rather helpful in the rapid prediction of the upper limit of the
intrinsic mobilities of materials.

It is expected that different POP modes contribute differently
to the total scattering rate. By plotting the mode-resolved coupling
strength gλq in Eq. (13) for different λ modes, one can visualize the
detailed contributions of each mode to the total carrier scattering.
Figure 1 shows the computed angularly averaged coupling matrix
elements for different phonon modes at a fixed magnitude of
jqj ¼ 0:05 2π=a (a is a lattice constant) for SnO, SnO2, and
Ta2SnO6. Because the calculated phonon eigenvectors are not exactly
parallel or perpendicular to q, we calculate coupling matrix elements
for all the optical phonon modes that appear in the phonon disper-
sion. We can see that in these three crystals, different modes make
different contributions, with some modes accounting for almost total
coupling strength, while other modes contributing only marginally.
Specifically, in SnO, the phonon mode wλ ¼ 30:3meV accounts for
nearly 100% of the total coupling strength, with the remaining
modes giving two orders of magnitude smaller coupling. Predictably,
this vibration mode will play the dominant role in determining the
POP mobility of SnO. In SnO2, however, several significantly strong
couplings are observed, for example, 27.3meV, 32.5meV, 68.6meV,
and 72.7meV. When compared with SnO and SnO2, Ta2SnO6 shows
more dispersed coupling strengths among different modes, which
might result from the asymmetry of its crystal structure. Another
interesting finding is that although SnO and SnO2 exhibit mode
degeneracy due to tetragonal symmetry, these degenerate modes do
not give the same coupling strength. A closer look at the phonon

TABLE III. POP-limited motility model test in GaAs, ZnO, PbS, In2O3, and TiO2. The effective mass m*, static dielectric constant κ0, high-frequency dielectric constant κ∞,
and LO phonon frequency ωLO are experiment values, unless they are not available from literature studies, and in that case, the DFT predicted values are used instead
(denoted by *). In compounds with a hexagonal or tetragonal crystal structure, the effective mass and dielectric constant exhibit two distinct values along the c-axis (k) and
in-plane (⊥) directions. The characteristics of the LO mode in the crystals, whether isotropic or anisotropic and whether single LO mode or multiple LO modes, are also indi-
cated. For a fair comparison, the experimental measured mobilities are from single-crystal samples.

System Crystal structure

m*(m0)
Dielectric
constant

ωLO (cm−1) LO mode

μ (cm2/V s) calc.
μ (cm2/V s)

expt.

e h κ0 κ∞ e h e h

GaAs49 Zinc Blende (cubic) 0.067 0.51 12.9 10.89 291 Isotropic Single 12234 949 8500 400
ZnO50 Wurtzite (hexagonal) 0.29 0.78 7.77(⊥)

8.91(k)
3.68(⊥)
3.72(k)

583(⊥)
574 (k)

Anisotropic Multiple 365 82.7 205 50

PbS51 Halite (cubic) 0.18* 0.16* 169 15.2 202 Isotropic single 760 861 60052 60052

In2O3
53 Bixbyite (cubic) 0.306 2.87* 8.954 4.154 245*

196*
194*
161*

Isotropic multiple 342 11.6 160 …

TiO2
55 Anatase (tetragonal) 0.45*(⊥)

4.54*(k)
2.19*(⊥)
1.03*(k)

45.1(⊥)
22.7(k)

5.4(⊥)
5.8(k)

876(⊥)
366(⊥)
755(k)

Anisotropic Multiple 81.5(⊥)
2.55(k)

7.62(⊥)
24.2(k)

1856 …
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structures of SnO and SnO2 reveals that those frequency-degenerate
modes do not assume degenerate or equivalent eigendisplacements,
which would account for the different coupling strength. In
Ta2SnO6, however, because of the monoclinic crystal nature, no
degenerate modes are observed.

Next, we calculated the scattering rates at room temperature
for different POP modes in SnO, SnO2, and Ta2SnO6. As discussed
previously, the matrix elements show the direction dependence,
and we thus adopted a spherically averaging approximation.
The resulting scattering rates with k along the z-direction are
shown in Fig. 2. For each material, the total scattering rate as well
as scattering rates by several strong coupling branches are plotted.
The contribution to the total scattering rate by each mode in SnO,
SnO2, and Ta2SnO6 is consistent with the result shown in Fig. 1. In
SnO, the total scattering rate for holes moving along the z-direction
almost follows that of the phonon mode wλ ¼ 30:3meV because
this mode is responsible for nearly all the scattering events. Since
the POP scattering includes both phonon absorption and emission
processes, the scattering rate for each mode clearly shows the kink
at the point of phonon energy, which corresponds to the onset of
phonon emission. By comparing the two modes 27.3 and 68.6 meV
that give the similar coupling strength in SnO2, we found that the

27.3 meV low-energy phonon mode is more effective in scattering.
This is because low-energy phonon modes are efficiently activated
at room temperature and provide two scattering channels (absorp-
tion and emission) for electrons near the Fermi level. The scattering
rate gradually drops at higher electron/hole energy, due to the
decreased available density of states that carriers can be scattered
into. Figure 2 also shows the carrier distribution obtained by com-
bining the Fermi-Dirac distribution function and electron/hole
DOS. The energy range that shows a high electron/hole distribution
will be more relevant to the averaged relaxation time, as indicated
by Eq. (2).

The POP mobilities at room temperature for SnO, SnO2, and
Ta2SnO6 were then calculated, as listed in Table IV. Generally, in
polar crystals, the POP is the dominant scattering mechanism lim-
iting the room-temperature intrinsic mobilities.35 In our results, the
POP mobilities are much lower than the ADP mobilities agreeing
with the expectation. To compare with experimental data, we also
calculated the POP-limited Hall mobility. The Hall mobility differs
from the drift mobility by the so-called Hall factor, which can be
calculated as rH ¼ hhτ2ii=hhτii2, where double brackets represent
energy-weighted average as indicated in Eq. (2). Since POP scatter-
ing is the limiting factor, we will use our calculated POP mobilities

FIG. 1. The electron-phonon coupling matrix elements for each POP (both LO and TO) mode at jqj ¼ 0:05 2π=a (a is the lattice constant) in SnO, SnO2, and Ta2SnO6.

The squared modulus of coupling matrix elements is used and normalized according to 1 ¼P
λ
(gλq)

2.

FIG. 2. Total scattering rates and the contributions by several strong coupling branches in SnO, SnO2, and Ta2SnO6. The carrier distributions are also plotted to the right
y-axis. Only electrons/holes moving along the z-direction are presented.
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to compare with experiments. For SnO, we obtain the hole mobilities
of 9.4 and 94.4 cm2/(V s) for x- and z-directions, respectively,
leading to an average hole mobility of 38 cm2/(V s). Correspondingly,
the p-type Hall mobility averages out at 67 cm2/(V s). In comparison,
experiments have so far achieved room-temperature hole drift mobil-
ities ranging from 0.1 to 10 cm2/(V s) and Hall mobilities from 1 to
18 cm2/(V s), depending on the materials’ crystallinity and the device
geometries.6,17,18 Our results are in fair agreement with the reported
experimental value, if one considers that other extrinsic factors such
as ionized impurity scattering are expected to exist in experimental
samples. For electrons in SnO2, our calculated drift mobility varies
from 170 cm2/(V s) in the x-direction to 235 cm2/(V s) in the
z-direction, with spatially averaged value at 192 cm2/(V s). This
results in an averaged Hall mobility of 265 cm2/(V s), which agrees
well with the experimental value at 300 K [240 cm2/(V s)] as well as
other theoretical calculations [310 cm2/(V s)].57 For Ta2SnO6, there
has been an experimental report on the electrical characterization
of the Sn-O-Ta compound, but only with the Ta2Sn2O7 stoichi-
ometry.21 The measured mobility for Ta2Sn2O7 [∼0.1 cm2/(V s)]
stands much lower than our predicted mobility for TaSn2O6 due
to the more flat valence band and the resulting larger effective
hole mass in Ta2Sn2O7.

58 Finally, we calculated the total mobility
taking both ADP and POP into account, as presented in Table IV.
For all these materials, the phonon-limited intrinsic mobilities are
close to the POP mobilities, indicating that POP plays a dominant
role in carrier scattering.

D. Discussion

Although a spherical averaging approximation was adopted in
treating the anisotropy of lattice vibrations, the carrier mobilities in
SnO, SnO2, and Ta2SnO6 are still highly anisotropic, due to the
strong anisotropy of the electronic structure, i.e., effective mass.
This is manifested by the almost 10 times difference of hole mobil-
ity in different directions in SnO. The tetragonal layer-structured
SnO shows only two hole effective masses: 0.64m0 along the
z-direction (interlayer) and 2.98m0 in the plane perpendicular to
the former direction (intralayer). The smaller effective mass in the
interlayer direction leads to a higher mobility along the direction,
in contrast to other 2D materials such as MoS2 where intralayer
transport is often superior than interlayer transport.59 Compared
with SnO and SnO2, Ta2SnO6 shows relatively low room-
temperature mobilities for both electron and hole due to the large

effective masses, which in turn suggests that the effective masses
account for the differences in the mobilities in different materials.

Interestingly, our results show that SnO exhibits an excellent
electron mobility with an average value of 228 cm2/(V s). This value
is even higher than that in n-type SnO2 where electron mobility
averages out at 187 cm2/(V s). This finding may motivate experimen-
talists to incorporate SnO as a n-type semiconductor into the already
realized unipolar p-type SnO-based transistors to implement high-
performance complementary circuits. Currently, oxide semiconduc-
tor research community is searching for promising p-type oxides
with good mobility as they remain elusive. SnO2 has been proposed
as a potential p-type oxide due to its compatibility with the com-
mercialized n-type SnO2-based electronics. However, the acceptor
doping for p-type SnO2 has recently proven unachievable, due to
the hole trap center formation associated with the acceptor
defects.60 Since SnO has been identified as a p-type oxide candi-
date, if validated having good n-type doping ability, it could be
potentially introduced as a bipolar semiconductor into oxide elec-
tronics that requires both n-type and p-type MO materials.
Further studies would be focused on the investigation of n-doping
achievable in SnO.

SnO is expected to exhibit good hole mobility due to its
relatively low effective hole mass resulted by the hybridization of
pseudo-closed 5s2 orbitals of Sn2+ and oxygen 2p orbitals.6

However, our calculated result shows that the highest possible hole
mobility for SnO stands at 60 cm2/(V s), slightly lower than the tar-
geted value of 100 cm2/(V s) to be considered a high-mobility
p-type oxide. Ta2SnO6 shows even lower hole mobility than SnO,
indicating a necessity of further investigation to discover higher
mobility p-type oxides. Alternative compounds can be identified
through searching for the materials with even lower hole effective
masses. This can be implemented based on the screening rule that
VBM are largely occupied by the delocalized s-orbital of nontransi-
tion metal (TM) or d-orbital of TM. A few novel materials includ-
ing B6O, A2Sn2O3 (A = K, Na), and ZrOS have recently been
identified as low-effective-mass oxides according to such rule.14

However, their mobilities are subject to further investigation, as
mobilities are also influenced by various scattering mechanisms.

IV. CONCLUSION

In conclusion, we employed a first-principles approach to
calculate intrinsic phonon-limited mobilities for Sn-based oxide

TABLE IV. The static and high-frequency dielectric constants κ0 and κ∞, POP-limited mobilities μPOP, mobilities limited by both ADP and POP in SnO, SnO2, and Ta2SnO6,
Hall factors rH, averaged Hall mobilities μHall (ave) limited by POP, and the experimentally determined Hall mobilities μH (expt.).

System

κ0 κ∞ μPOP (cm2/V s) μPOP + ADP (cm2/V s)

rH μHall (ave) μHall (expt.)x y z x y z x y z x y z

SnO e 21.7 21.7 11.8 7.0 6.4 6.4 289 289 128 280 280 125 1.30 306 …
h 9.4 9.4 94.4 7.4 7.4 60.0 1.77 66.8 1–186,16,31,61

SnO2 e 13.0 13.0 8.8 4.0 4.0 4.3 170 170 235 166 166 229 1.38 265 24057

h 15.8 15.8 11.1 15.7 15.7 11.0 1.37 19.5 …
Ta2SnO6 e 38.8 35.7 60.0 5.7 5.6 5.8 6.4 0.2 27.8 6.3 0.2 27.1 1.14 13.0 …

h 0.9 33.8 21.3 0.9 32.5 20.6 1.09 20.4 …
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semiconductors including p-type SnO and Ta2SnO6 and n-type
SnO2. Having considered multiphonon modes scattering, room-
temperature electron/hole mobilities in these oxides are found to
be predominantly limited by the POP scattering. Our results
agree well with previous theoretical calculations and experimental
data for SnO and SnO2. Although p-type SnO exhibits an excel-
lent electron mobility, the upper limit for its hole mobility stands
only at 60 cm2/(V s), slightly lower than the threshold value of
100 cm2/(V s) to be considered a high-mobility p-type oxide for
vertical CMOS. SnO2 shows good electron mobility with an
average value of 192 cm2/(V s), confirming its promise as an
n-type semiconductor. p-type Ta2SnO6 shows lower hole mobility
than SnO, indicating a necessity of further investigation to dis-
cover higher mobility p-type oxides. Calculated effective masses
directly correlate with the differences in mobilities of different
materials, which make it an effective screening criterion in search-
ing for high-mobility p-type oxides.
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