Comment on "Control of epitaxial growth for SrBi_2Ta_2O_9 thin films" [Appl. Phys. Lett. 72, 665 (1998)]

J. Lettieri, C. I. Weber, and D. G. Schlom

.

Citation: **73**, (1998); doi: 10.1063/1.122561 View online: http://dx.doi.org/10.1063/1.122561 View Table of Contents: http://aip.scitation.org/toc/apl/73/14 Published by the American Institute of Physics

COMMENTS

Comment on "Control of epitaxial growth for $SrBi_2Ta_2O_9$ thin films" [Appl. Phys. Lett. 72, 665 (1998)]

J. Lettieri, C. I. Weber, and D. G. Schlom

Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802-5005

(Received 24 March 1998; accepted for publication 4 August 1998)

[S0003-6951(98)01940-8]

Recently, Cho *et al.*¹ reported the epitaxial growth of *a*and *c*-axis SrBi₂Ta₂O₉ films. While we agree with their analysis of the *c*-axis films, we believe that the x-ray patterns that they attributed to the growth of *a*-axis SrBi₂Ta₂O₉ films are actually due to an epitaxial impurity phase: δ -Bi₂O₃, β -Bi₂O₃, or Bi_{7.80}Ta_{0.20}O_{12.20}.² All three have nearly degenerate peaks in 2θ , χ , and ϕ with each other and would give rise to x-ray patterns consistent in both peak positions and peak intensities with those shown by Cho *et al.*,¹ which they attributed to *a*-axis SrBi₂Ta₂O₉. Below, we describe how epitaxial δ -Bi₂O₃ would give rise to the same x-ray diffraction patterns reported by Cho *et al.*¹ Similar arguments can be made for β -Bi₂O₃ and Bi_{7.80}Ta_{0.20}O_{12.20} (see Table I).

In studying the epitaxial growth of $\text{SrBi}_2\text{Ta}_2\text{O}_9$ films,³ we observed very similar $\theta - 2\theta$ x-ray diffraction patterns to those reported by Cho *et al.*¹ for films grown on LaAIO₃(100) substrates by pulsed laser deposition at substrate temperatures of 750–800 °C and oxygen/ozone (~5%–10% ozone) pressures of 20–150 mTorr. An example is shown in Fig. 1. This $\theta - 2\theta$ plot alone is inconclusive for

TABLE I. Degenerate peaks for SrBi2Ta2O9 and three impurity phases.^a

Phase	Peaks	2θ (degrees)	$\chi^{\rm b}$ (degrees)	ϕ (degrees)
SrBi2Ta2O9	200	32.34	90	
(100)-oriented	400	67.68	90	
	115	28.95	51.94	0
	2010	49.08	42.10	45
δ -Bi ₂ O ₃	$2\overline{00}$	32.28	90	
(100)-oriented	400	67.76	90	
	111	27.94	35.26	0
	220	46.43	45.00	45
$\beta = Bi_2O_3$	220	32.68	90	
(110)-oriented	440	68.47	90	
	201	27.94	35.64	$\pm 0.81^{\circ}$
	400	46.89	45.00	45
Bi _{7.80} Ta _{0.20} O _{12.20}	220	32.77	90	
(110)-oriented	440	68.68	90	
	201	27.94	35.71	$\pm 0.96^{\circ}$
	400	47.03	45.00	45

^aThe values are based on Cu $K\alpha_1$ radiation, bulk lattice constants (Refs. 2 and 5) and $\phi = 0^{\circ}$ chosen to be parallel to the in-plane [001] direction of the (100) LaAlO₃ substrate.

 ${}^{b}\chi = 90^{\circ}$ is perpendicular to the plane of the substrate. {Assuming degenerate epitaxy (Ref. 4).

FIG. 1. X-ray diffraction patterns of a film grown under similar conditions as Cho *et al.* (Ref. 1) that does not contain SrBi₂Ta₂O₉. (a) θ -2 θ (at χ =90°) plot of an epitaxial impurity phase (labeled as *). (b) ϕ scan at χ =45.0° and 2θ =47.5°. (c) ϕ scan at χ =35.3° and 2θ =28.5°. These x-ray scans are all comparable to the scans presented in Figs. 1(a), 2(b), and 2(c) of Ref. 1, respectively.

phase determination, since the $h00 \ \delta$ -Bi₂O₃ peaks occur at nearly identical positions as the SrBi₂Ta₂O₉ h00 peaks (see Table I). Using four-circle x-ray diffraction we have found that the phase in our films has peaks consistent with one of the aforementioned degenerate impurity phases, but *inconsistent* with the growth of *a*-axis SrBi₂Ta₂O₉. We determined conclusively that our films do not contain *a*-axis SrBi₂Ta₂O₉ by conducting a ϕ scan of the 115 peak at $\chi \cong 54^\circ$. No peaks were found, which indicates the absence of *a*-axis SrBi₂Ta₂O₉ (not shown).

The ϕ scans reported by Cho *et al.*¹ are insufficient to discriminate between the growth of epitaxial δ -Bi₂O₃ and SrBi₂Ta₂O₉. The 2010 reflection of *a*-axis SrBi₂Ta₂O₉ is indistinguishable from the 202 δ -Bi₂O₃ reflection in 2 θ , χ , and ϕ [see Table I and Fig. 1(b)]. The final ϕ scan presented by Cho *et al.*,¹ a ϕ scan where SrBi₂Ta₂O₉ would yield 115 peaks, is capable of discriminating between the growth of *a*-axis SrBi₂Ta₂O₉ and δ -Bi₂O₃. Here, there is an overlap of peaks in 2 θ and ϕ (if the orientation with the most favorable lattice match is considered), but in χ the peaks occur at complementary angles (see Table I). Since no χ values are reported by Cho *et al.*,¹ we can only speculate as to whether the reported ϕ scan might have been performed at the complementary χ angle. A plot showing our ϕ scan for our degenerate impurity phase is shown in Fig. 1(c).

The most compelling evidence, however, lies in a consideration of structure and lattice parameters. Cho *et al.*¹ see a fourfold symmetry in their ϕ scans, which they attribute to SrBi₂Ta₂O₉ growing with a "biepitaxial" structure. In fact,

we believe that they see a fourfold symmetry (rather than a twofold symmetry as would be seen in a single domain, aaxis orthorhombic structure) because they are actually looking at the growth of (100)-oriented δ -Bi₂O₃, a cubic material. Finally, Cho *et al.*¹ note the lattice parameters that they determine from their x-ray measurements of "a-axisoriented SrBi₂Ta₂O₉ films'' ($a \approx b = 5.361$ Å, c = 26.83 Å) differ greatly from those observed for bulk SrBi₂Ta₂O₉ (a =5.5306 Å, b=5.5344 Å, c=24.9839 Å),⁵ or for their caxis oriented $\text{SrBi}_2\text{Ta}_2\text{O}_9$ films $(a \approx b = 5.574 \text{ Å}, c)$ = 25.07 Å). Although these highly distorted lattice constants appear unusual when indexed as $SrBi_2Ta_2O_9$, the c/a lattice parameter quotient is integral (5), as would be expected for a cubic phase that has been misindexed, i.e., δ -Bi₂O₃. We believe what they are classifying as one unit cell of SrBi₂Ta₂O₉ is really five unit cells of δ -Bi₂O₃. Similar arguments can be made for the other nearly degenerate impurities in place of δ -Bi₂O₃ in the above discussion of structure and lattice parameter.

- ¹J. H. Cho, S. H. Bang, J. Y. Son, and Q. X. Jia, Appl. Phys. Lett. **72**, 665 (1998).
- ² Powder Diffraction File (International Center for Diffraction Data, Swarthmore, PA, 1995) JCPDS cards 27-52, 27-50, and 43-451.
- ³J. Lettieri, Y. Jia, M. Urbanik, C. I. Weber, J.-P. Maria, R. Uecker, P. Reiche, and D. G. Schlom, Presented at the 10th International Symposium on Integrated Ferroelectrics, Monterey, CA, 1998 (unpublished).
- ⁴S.-W. Chan, J. Phys. Chem. Solids **55**, 1137 (1994).
- ⁵A. D. Rae, J. G. Thompson, and R. L. Withers, Acta Crystallogr., Sect. B: Struct. Sci. **B48**, 418 (1992).