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Abstract—Ultrahigh-mobility compound semiconductor-based
MOSFETs and quantum-well field-effect transistors could enable
the next generation of logic transistors operating at low supply
voltages since these materials exhibit excellent electron transport
properties. While the long-channel In0.53Ga0.47As MOSFETs
exhibit promising characteristics with unpinned Fermi level at
the InGaAs–dielectric interface, the high-field channel mobility as
well as subthreshold characteristics needs further improvement.
In this paper, we present a comprehensive equivalent circuit model
that accurately evaluates the experimental small-signal response
of inversion layers in In0.53Ga0.47As MOSFETs fabricated with
LaAlO3 gate dielectric and enables accurate extraction of the
interface state profile, the trap dynamics, and the effective channel
mobility.

Index Terms—High-κ dielectric, InGaAs, interface states,
small-signal admittance modeling, split capacitance–voltage.

I. INTRODUCTION

U LTRAHIGH-MOBILITY compound semiconductor-
based (e.g., indium antimonide, indium arsenide, and

InxGa1−xAs) MOSFETs and quantum-well field-effect transis-
tors could enable the next generation of logic transistors oper-
ating at low supply voltages since these materials exhibit
excellent low-field and high-field electron transport properties
[1]–[3]. Effective channel mobility as a function of the trans-
verse effective electric field or inversion carrier density is an
important metric for characterizing the performance of
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In0.53Ga0.47As-based MOSFETs since it not only affects
the long-channel MOSFET performance directly but also
determines the short-channel MOSFET performance in the
nonballistic regime indirectly by influencing the source-side
injection velocity [4]. The split capacitance–voltage (C–V )
measurement of the MOSFET inversion capacitance is the
standard technique of extracting the effective channel mobility
of MOSFETs, which involves direct estimation of the mobile
inversion charge density (Ninv) through the gate to channel
capacitance (Cgc) as a function of the gate-to-source voltage
(Vg) as given by

Qinv =

Vg∫

−∞

Cgc(V ) dV. (1)

While this method is reliable and highly accurate for most
silicon-based MOSFETs, including the high-κ/metal-gate
Si MOSFETs, it is less straightforward in the case of
In0.53Ga0.47As MOSFETs. In InGaAs-based MOSFETs, the
complex nature of the semiconductor–dielectric interface with
a relatively high density of interface states Dit can exhibit a
capacitance Cit that contributes significantly to the measured
Cgc, even in inversion leading to an overestimation of extracted
Ninv. This can lead to incorrect evaluation of the effective
channel mobility. In0.53Ga0.47As and high-κ dielectric inter-
faces are known to possess interface defects. Although the exact
origin of the defects is still under debate, there is evidence that
compound semiconductors exhibit interface states that arise
from the native defects, such as Ga or As dangling bonds as
well as Ga–Ga -or As–As-like atom bonds created by unwanted
oxidation during the process of gate dielectric formation. It has
been proposed that the As–As antibonding states due to local
excess arsenic created during the gate oxide deposition can lead
to a distribution of states that extend into the conduction band
[5], [6]. The presence of interface states near the conduction
band leads to a fast trap response as the Fermi level approaches
and enters the conduction band in the inversion regime. Many
recent publications of III–V MOSFETs have reported split
C–V measurements and the resultant mobility calculated from
those measurements [7]–[9]. Frequency dispersion due to Cit

as well as lumped and distributed resistance effects in the
inversion regime has strongly influenced the Cgc versus Vg (or
C–V ) curves resulting in incorrect mobility calculations.
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In this paper, we will outline a novel technique that self-
consistently solves the C–V and conductance–voltage (G–V )
measurement data as a function of gate bias and small-signal
ac frequency to uniquely determine the Dit response as well as
the true inversion carrier response for a given voltage. This tech-
nique enables us to extract the true inversion capacitance (Cinv)
as a function of temperature and gate bias in the inversion
regime. The impact of parameters such as oxide capacitance,
tunnel conductance, fixed series resistance, distributed channel
resistance, and interface state capacitance and conductance on
the extraction of true inversion carrier density is systematically
studied using the experimental data. Various methods have
been reported in the literature to correct for interface state
density. The method proposed by Hinkle et al. [10] requires the
low-temperature C–V to be free from dispersion due to Dit.
The method proposed by Zhu et al. [11] compares the measured
C–V data with the simulated ideal C–V to account for the
stretch out in the C–V and the output conductance (gds)
characteristics. This method also assumes that the experimental
inversion response of the carriers is free from frequency dis-
persion due to interface states, which may be applicable for
silicon- and germanium-based materials where the inversion
carrier densities are high due to high density of states (DOS)
but not for III–V systems. Martens et al. [12] proposed the
full conductance technique that is suitable for extracting the
interface state density across the entire band gap for any ma-
terial system. However, Martens’ approach requires detecting
the exact location of the conductance peak due to interface
states, which depends on the measurement ac frequency and
the temperature. In addition, the technique does not allow direct
extraction of the inversion carrier density. Unlike the first two
approaches [11], [12], our work does not assume a priori that
low-temperature and high-frequency C–V data are necessarily
free from Dit effect. Instead, our technique directly extracts the
interface state density, trap time constant, and the frequency-
independent inversion channel capacitance by directly solving
an equivalent circuit model from the measured admittance
values. Another key difference in our proposed method from
the commonly used full conductance technique [12], [13] is
that, we do not need information about the peak position in
the measured conductance (Git/ω) versus frequency; we rather
solve the conductance and the capacitance contributions of
Dit in a self-consistent manner over the entire frequency and
voltage range. This allows us to extract the Dit distribution over
a wider range of energy than the one given by the peak conduc-
tance method for a given frequency range of the impedance-
measuring instrument at a given temperature. This also allows
extraction of the true Cinv free from any frequency dispersion.
Extracting the true inversion charge as a function of gate voltage
also enables us to link the gate voltage directly to the surface
potential in the presence of a “frequency-dependent threshold
voltage (Vt) and flatband voltage (Vfb) shift,” whereas in [12],
it is not possible to obtain the surface potential to gate volt-
age relationship unless Vt or Vfb is known precisely. Another
common approach in the literature to obtain energy location of
the traps is from the interface trap time constant by assuming
a particular capture cross section [16]. However, capture cross
section values discussed in the literature vary by orders of

Fig. 1. Effect of distributed channel resistance on the (a) C–V and
(b) G–V characteristics. (c) Equivalent circuit of a MOSFET in strong inver-
sion incorporating the channel resistance and ignoring the effects of interface
states and gate leakage.

magnitude (1 × 10−12 to 1 × 10−19 cm2), and assuming a par-
ticular capture cross-section for energy estimation is susceptible
to errors. Further, in our model, we also consider the effects
of series resistance (distributed channel resistance and lumped
contact resistance) and gate leakage in addition to the Dit

response while solving the equivalent circuit model. Solving
the capacitance data together with the conductance data gives
more accuracy in extracting the Dit and Ninv as the capacitance
data are relatively less sensitive to parasitic resistance and gate
leakage effects than the conductance data.

II. FACTORS AFFECTING SPLIT C–V MEASUREMENTS

In this section, we systematically explain the impact of dis-
tributed channel resistance, gate leakage and interface states on
the admittance behavior of an In0.53Ga0.47As MOS transistor
biased in weak and strong inversion.

A. Effect of Distributed Channel Resistance

Since the interface states in the upper half of the semicon-
ductor band gap can respond to small-signal ac frequencies
in the split capacitance measurement, one minimizes the error
either 1) by increasing the small-signal measurement frequency
or 2) by lowering the temperature of measurement so that
the interface traps cannot follow the fast changing ac signal.
However, the distributed nature of the channel resistance comes
into play at higher frequencies, which causes the measured
capacitance to be lower than the true capacitance, resulting in an
underestimation of Ninv. This is illustrated in Fig. 1(a), where
the frequency dispersion in both C–V and G–V data is caused
solely by the channel resistance. Physically, the distributed
channel resistance accounts for the energy loss during the
minority carrier transport between the source/drain at any given
position in the channel. As the channel length increases, the
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Fig. 2. Effect of tunnel conductance due to gate to channel leakage on the
(a) C–V and (b) G–V characteristics. (c) Equivalent circuit of a MOSFET
in strong inversion incorporating the tunnel conductance and the distributed
channel resistance.

dispersion in C–V and G–V also increases due to the increased
channel resistance.

B. Effect of Gate Leakage

In the case of an ultrathin gate dielectric with a significant
gate leakage, we need to consider the effect of the tunnel
conductance that shunts the oxide capacitance as well as the
interface state capacitance. A direct impact of this increased
tunnel conductance, which appears in series with the channel
and series resistance, is shown in Fig. 2(a), where an increasing
percentage of the ac test voltage appears across the channel
resistance as gate leakage increases with higher Vg, leading
to a droop in the C–V characteristics. In Fig. 2(b), we show
the effect of increased tunnel conductance on the G–V data
where there is a linear monotonic increase in the measured
conductance as the gate voltage is increased.

C. Effect of Interface States

Here, we analyze the effect of interface states on the split
C–V characteristics. The frequency dispersion in the C–V data
caused by the Dit effect is shown in Fig. 3(a). A constant
Dit distribution (1 × 1013/cm2/eV) across the upper half of
the bandgap is assumed as an illustrative example in this case
to calculate the frequency dispersion in the C–V and G–V .
The presence of Dit causes a frequency-dependent “threshold
voltage shift” in the C–V characteristics. At lower frequencies,
the capacitance rises at lower Vg due to strong contribution from
the midgap states, while at higher frequencies, the midgap states
cannot respond, and the contribution comes primarily from the
band edge states that are active at higher Vg. The conductance
peak will also shift to higher Vg’s with higher frequencies as the
band edge states get activated.

Fig. 3. Effect of interface states Dit on the (a) C–V characteristics and
(b) G–V characteristics. The equivalent circuit model in inversion incorporat-
ing the effect of Dit is shown in the inset of (a).

Fig. 4. Effect of interface states, series resistance (contact and channel), and
tunnel conductance on the (a) C–V characteristics and (b) G–V characteristics.

D. Effect of Channel Resistance, Gate Leakage, and
Interface States

Finally, we show the combined effects of series contact resis-
tance, distributed channel resistance, gate leakage, and interface
states on the C–V and G–V characteristics in the inversion
regime in Fig. 4(a) and (b). We identify the various regimes
marked as A, B, C, and D in the G–V –f characteristics. In
region A, at high gate voltage and low frequency, the mea-
sured conductance values are directly related to the tunneling
conductance estimated from the direct current gate leakage
measurements. In region B, at high gate voltage and high
frequency, the series resistance (from contact resistance and
distributed channel resistance) effect markedly increases the
frequency dispersion of the measured conductance. It should
be noted that in the high-gate-voltage regime, as the Fermi level
moves deep inside the conduction band, the interface state con-
ductance is negligible, and the measured conductance is only
the tunneling conductance modified by the series resistance
and the measurement frequency. In region C, at lower gate
voltage and lower frequency, the conductance peak exhibits a
strong frequency dependence due to contribution from the near
midgap states. In region D, at intermediate gate voltage and
higher measurement frequency, the conductance contribution
comes from the band edge states. The equivalent circuit model
is described comprehensively in Section III.
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Fig. 5. Equivalent circuit model of MOSFET in weak and strong inversion:
Cox = oxide capacitance; Gtunnel = tunnel conductance; Cit = interface
trap capacitance; Git = interface trap conductance; Cinv = semiconductor in-
version capacitance; Rch = gate bias-dependent inversion channel resistance;
and Rcontact = series resistance associated with implanted source/drain re-
gions, contacts, and metal pads.

III. EQUIVALENT SMALL-SIGNAL MODEL

A standard LCR meter (HP4285A) was used to measure
the capacitance (split C–V ) and conductance of In0.53G0.47As
n-MOSFETs with LaAlO3 gate dielectric, as a function of
frequency and voltage for a range of temperature from 300
to 35 K. Measurements were made in parallel mode with a
small-signal ac amplitude of 25 mV. The equivalent model in
inversion including all the effects is shown in Fig. 5.

The model incorporates several features that are currently
absent in recent publications while extracting the true Ninv

and Dit, particularly when the channel is close to inversion
or is inverted. For example, the first step in the formulation
of the model is the inclusion of the fixed series resistance
Rcontact at the two ends of the channel. In addition, due to
the distributed nature of the inversion channel resistance Rch,
we create a transmission line model to accurately reflect the
effect of Rch as well as the tunnel conductance of the oxide
Gtunnel arising from gate leakage. The gate oxide or insulator
capacitance Cox is estimated from the maximum capacitance
measured in accumulation on a MOS capacitor. We verify the
validity of our Cox estimation by comparing with physical
measurements (cross section transmission electron microscopy)
as well as from minimizing the error between the calculated and
measured C–V /G–V data points across the frequency range
during the extraction process. A closed-form equation was
derived to model the admittance of the circuit shown in Fig. 5.

The measured admittance between the gate and source/drain
for the circuit shown in Fig. 5 is given by

Ym = Gm + jωCm (2)

where Gm and Cm are the measured conductance and capaci-
tance, respectively. Cm and Gm are given by

Cm = Re [C ′ tanh(λ)/λ] + (Git/CIω)Im [C ′ tanh(λ)/λ]
+ (Gtunnel/ω)Im [tanh(λ)/λ]

(in farads/square centimeter) (3)
Gm

ω
= − Im [C ′ tanh(λ)/λ] + (Git/CIω)Re [C ′ tanh(λ)/λ]

+ (Gtunnel/ω)Re [tanh(λ)/λ]
(in farads/square centimeter) (4)

respectively. Here, C ′ = [CoxCI ]/[Cox + CI + Git/jω], Cox

is the oxide capacitance in (in farads/square centimeter), CI =

Cinv + Cit (in farads/square centimeter), λ = γL/2, γ2 =
r1[jωC ′ + C ′Git/CI + Gtunnel], r1 = (W/L)/gds (in ohms),
Gtunnel = [∂Ig/∂Vg]/[WL] (in siemens/square centimeter),
and gds = [∂Ids/∂Vds] (in ohms). The above model is derived
based on [15] after including the effects of Cit and Git.

The admittance due to a distribution of interface traps is
given by the capacitance Cit and the conductance Git, which
is given by [13]

Cit = q

∞∫

−∞

Dit

ωτ
tan−1(ωτ)P (σs, E) dE

(in farads/square centimeter) (5)

Git

ω
=

q

2

∞∫

−∞

Dit

ωτ
ln(1 + ω2τ2)P (σs, E) dE

(in farads/square centimeter). (6)

A random spatial distribution of interface defects causes a
spatial distribution in the band bending, which is accounted for
by the integrand in (5) and (6), where τ is the interface trap
time constant, σs is the surface potential fluctuation, and P is a
Gaussian distribution with a variance of σ2

s .
The effect of surface potential fluctuation was not considered

in our analysis of Cit and Git. The transmission line equiva-
lent circuit model was solved for τ , Dit, and Cinv using the
algorithm explained below. The measured conductance and ca-
pacitance data from the split C–V measurement are converted
to measured admittance data Ymeasured. These admittance data
are further corrected for contact resistance (obtained from trans-
fer length method), as given by 1/Ycorrected = 1/Ymeasured −
Rcontact/2. The factor 2 in the above expression is due to
the symmetry between source and drain in the split C–V
measurement. These corrected data are now solved to obtain
Dit, τ , and Cinv over the entire frequency range as given by (7)
at a particular bias point, i.e.,∑

frequency

[Ycorrected − Ym(Dit, τ, Cinv)] = 0. (7)

Here, Ym(Dit, τ, Cinv) is the set of all possible solutions as
per (2) for the range of Dit, τ , and Cinv considered. The
channel conductance gds and the tunnel conductance Gtunnel

used in (2) are obtained from Id–Vd and Ig–Vg measurements,
respectively. This process is repeated over the entire bias points
to obtain Dit, τ , and Cinv as a function of voltage. Obtaining
true inversion charge as a function of Vg enables a natural
translation from gate bias to surface potential even in the pres-
ence of frequency-dependent Vt and Vfb shift. This allows us to
accurately express Dit as a function of energy. Fig. 6(a) and (b)
shows the 300-K experimental C–V and G–V data compared
to the solution obtained from our model, which shows excellent
agreement.

IV. EXTRACTING Dit , τ , AND Ninv

Having confirmed the validity of the proposed equivalent cir-
cuit model, we proceed to extract the interface state density, its
response time, and the true inversion carrier density as a func-
tion of gate voltage. We apply our technique to a wide range
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Fig. 6. (a) Experimental C–V and (b) experimental G–V data at 300 K
compared to the modeled data using the proposed equivalent circuit model.

Fig. 7. Equivalent parallel conductance of the traps (Git/ω) as a function of
gate bias and frequency. The trace of the conductance peaks (shown in dotted
red line) reflects the Fermi level movement.

of operating temperatures of the In0.53Ga0.47As MOSFET to
extract the Dit, τ , and true Ninv from 300 K down to 35 K.

Unlike the full conductance method, we can quantitatively
extract the Dit over a wide range of energy at room temperature
even though the precise location of the conductance peak
(Git/ω)peak is outside the measurement frequency range. Fig. 7
shows the equivalent parallel conductance of the interface traps
as a function of gate bias and frequency. It can be seen that
a subset of conductance peaks, particularly at low gate bias,
which corresponds to midgap trap response, is outside the mea-
surement frequency range. However, on solving the equivalent
circuit model, the Dit data are precisely extracted for low gate
bias. The extracted Dit and τ are shown in Fig. 8(a) and (b).
Fig. 8(b) also reveals the typical Λ-shaped characteristic of
the interface trap time constant τ(E). It is noteworthy that the
Dit profile extracted independently from the measured C–V
and G–V data at three different temperatures are consistent
with each other. The Dit profile could be interpreted as a sum
of two Gaussian distributions with high and low peak values.
The Gaussian with the high peak spans across the midgap of
the In0.53Ga0.47As semiconductor and is responsible for the
subthreshold slope (SS) degradation commonly observed in
In0.53Ga0.47As-based MOSFETs [14]. The second Gaussian
distribution with lower peak extends toward and into the

Fig. 8. (a) Extracted interface state density versus energy and (b) extracted
trap response time versus energy.

Fig. 9. (a) Extracted trap response time versus energy compared to the
theoretical response time. (b) Experimental and theoretical (without Dit) sub-
threshold slope and the interface state density extracted from the experimental
subthreshold slope as a function of temperature.

conduction band. Since this peak is much reduced, high on
current in inversion is expected and has been experimentally
reported for In0.53Ga0.47As MOSFETs [7]. In Fig. 9(a), we
compare the extracted time constant at three different tempera-
tures with the theoretical value calculated using the expression
τe = (Ncσvt)−1 exp(ΔE/kT ) [13], where Nc is the effective
conduction band DOS, σ is the capture cross section, vt is
the thermal velocity of electrons, and ΔE = Ec − E is the
energy location of the trap with respect to the conduction band.
Since we are analyzing the device in inversion, we need to only
account for the exchange of carriers with the minority band
(i.e., conduction band for the p-type substrate). We get a strong
agreement between the measured time constant and its theoret-
ical estimate over a large range of energy and temperature, fur-
ther validating our extraction approach. Fig. 9(b) compares the
subthreshold slope (SS) obtained from the measured transfer
characteristics of In0.53Ga0.47As MOSFETs and the theoretical
SS without Dit as a function of temperature. The expression
for the SS is given by SS = [2.3kT/q][1 + (Cd + Cit)/Cox],
where Cox is the oxide capacitance, Cd is the semiconductor
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Fig. 10. Measured C–V and extracted true C–V characteristics of
In0.53Ga0.47As MOSFETs at 300, 200, and 77 K.

Fig. 11. (a) Extracted Ninv from the C–V and G–V measurements and
(b) measured effective mobility as a function of inversion charge density.

depletion layer capacitance, and Cit is the capacitance due
to interface states. The interface state density obtained from
the experimental SS, plotted in Fig. 9(b), is around 1.5 ×
1013 cm−2 · eV−1. This is consistent with the range of the
midgap Dit concentration profile that we extracted from the
small-signal admittance modeling [Fig. 8(a)] where the Dit

ranges from 1 × 1013 to 3 × 1013 cm−2 · eV−1.
Fig. 10 shows the measured C–V characteristics exhibiting

the effects described above and the extracted true inversion
capacitance characteristics for three different temperatures. The
true mobile inversion charge density as a function of gate
voltage Vg is plotted in Fig. 11(a). The slope of each of the
curves is roughly equal to 0.49 μF/cm2, which is equivalent to
the series combination of the In0.53Ga0.47As inversion chan-
nel capacitance (limited by DOS) and the insulator capaci-
tance, which is 0.65 μF/cm2 (equivalent oxide thickness is
5.45 nm). Finally, the effective inversion channel mobility of
In0.53Ga0.47As MOSFETs is extracted [Fig. 11(b)] using the
low-field drain conductance and the inversion charge extracted
using the model.

V. CONCLUSION

In summary, we have presented here a comprehensive equiv-
alent circuit model to analyze the true small-signal response

of inversion carriers in In0.53Ga0.47As MOSFETs with high-κ
gate dielectric. Our approach attributes the frequency dispersion
commonly observed in the C–V and the G–V measurement
data of In0.53Ga0.47As MOSFETs quantitatively to various con-
tributing factors such as the interface states, contact resistance,
distributed channel resistance, and the tunnel conductance. This
allows us to self consistently solve for the frequency-dependent
interface state response and the frequency-independent true
inversion carrier density for a range of gate bias.
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