



## Comment on "Lattice deformation and magnetic properties in epitaxial thin films of Sr 1-x Ba x RuO 3 " [Appl. Phys. Lett. 73, 1200 (1998)]

J. Lettieri, I. W. Scrymgeour, D. G. Schlom, M. K. Lee, and C. B. Eom

Citation: Applied Physics Letters **77**, 600 (2000); doi: 10.1063/1.127057 View online: http://dx.doi.org/10.1063/1.127057 View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/77/4?ver=pdfcov Published by the AIP Publishing

## Articles you may be interested in

Magnetic properties of highly resistive BaFeO 3 thin films epitaxially grown on SrTiO 3 single-crystal substrates J. Appl. Phys. **93**, 6993 (2003); 10.1063/1.1556166

Structural, dielectric, and magnetic properties of epitaxially grown BaFeO 3 thin films on (100) SrTiO 3 singlecrystal substrates Appl. Phys. Lett. **81**, 2764 (2002); 10.1063/1.1513213

Epitaxial thin films of hexagonal BaRuO 3 on (001) SrTiO 3 Appl. Phys. Lett. **78**, 329 (2001); 10.1063/1.1338965

Response to "Comment on 'Lattice deformation and magnetic properties in epitaxial thin films of Sr 1-x Ba x RuO 3 '" [Appl. Phys. Lett. 77, 600 (2000)] Appl. Phys. Lett. 77, 602 (2000); 10.1063/1.127058

Lattice deformation and magnetic properties in epitaxial thin films of Sr 1-x Ba x RuO 3 Appl. Phys. Lett. **73**, 1200 (1998); 10.1063/1.122126



This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 128.84.143.26 On: Thu, 02 Jul 2015 13:43:24

COMMENTS

## Comment on "Lattice deformation and magnetic properties in epitaxial thin films of $Sr_{1-x}Ba_{x}RuO_{3}$ " [Appl. Phys. Lett. 73, 1200 (1998)]

J. Lettieri, I. W. Scrymgeour, and D. G. Schlom<sup>a)</sup>

Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802-5005

M. K. Lee and C. B. Eom

Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708

(Received 11 November 1999; accepted for publication 31 May 2000)

[S0003-6951(00)03130-2]

Recently, Fukushima *et al.*<sup>1</sup> reported the epitaxial growth of (001) BaRuO<sub>3</sub> films with the perovskite structure on (001) SrTiO<sub>3</sub> substrates. Based on BaRuO<sub>3</sub> films we have grown by both 90° off-axis sputtering and pulsed laser deposition,<sup>2</sup> however, we believe that the x-ray patterns that they attributed to the growth of the metastable perovskite<sup>3</sup> polymorph of BaRuO<sub>3</sub> are actually due to the stable nine layer (9*L*) hexagonal polymorph of BaRuO<sub>3</sub>,<sup>4</sup> with a (2025) orientation. As has been shown for other materials systems,<sup>5</sup> these polymorphs have nearly degenerate peaks in 2 $\theta$ ,  $\chi$ , and  $\phi$ 



FIG. 1. X-ray diffraction patterns of a film grown under similar conditions as Fukushima *et al.* that is *not* BaRuO<sub>3</sub> with the perovskite structure, but rather the 9*L* polymorph of BaRuO<sub>3</sub> (see Ref. 7): (a)  $\theta$ -2 $\theta$  at  $\chi$ =90° [substrate peaks are labeled as (\*)] and (b)  $\phi$  scan of the 0115 reflection of the 9*L* polymorph of BaRuO<sub>3</sub> at 2 $\theta$ ≈27.2° and  $\chi$ ≈43.0°.

with each other and would give rise to x-ray patterns consistent in both peak positions and peak intensities with those shown by Fukushima *et al.*<sup>1</sup>

In studying the epitaxial growth of BaRuO3 films on (001) SrTiO<sub>3</sub>, we observed very similar  $\theta$ -2 $\theta$  x-ray diffraction (XRD) patterns to those reported by Fukushima et al.<sup>1</sup> An example is shown in Fig. 1(a). This  $\theta - 2\theta$  plot alone is inconclusive for phase determination, since the 002 peak of the perovskite polymorph occurs at a nearly identical  $2\theta$ value as the  $20\overline{2}5$  reflection of the 9L polymorph (see Table I). The small discrepancy between the observed and calculated position of the  $20\overline{2}5$  reflection is most likely due to strain and film inhomogeneity.<sup>7</sup> Additionally, the  $\phi$  scan reported by Fukushima et al.1 is insufficient to discriminate the 101 reflection of the perovskite polymorph from the  $11\overline{2}0$  reflection of the 9L polymorph (see Table I). Using four-circle x-ray diffraction and performing a  $\phi$  scan [Fig. 1(b)] at  $2\theta \approx 27.2^{\circ}$  and  $\chi \approx 43.0^{\circ}$  (0115 reflection of 9L BaRuO<sub>3</sub>) we have found the phase in our films to be consistent with the 9L BaRuO<sub>3</sub> polymorph, and inconsistent with the growth of the metastable perovskite polymorph.<sup>7</sup> This and other  $\phi$  scans, i.e., a scan of the  $11\overline{2}0$  reflection of the 9L polymorph, lead us to believe that each of the "very

TABLE I. Calculated XRD peak positions of the perovskite and the 9L hexagonal polymorph of BaRuO<sub>3</sub>.<sup>a</sup>

| Phase                                                                             | Peaks                                                  | 2 <i>θ</i><br>(deg)              | $\chi^{\rm b}$ (deg)          | $\phi$ (deg)                                                |
|-----------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------|-------------------------------|-------------------------------------------------------------|
| BaRuO <sub>3</sub><br>(001)-oriented<br>perovskite                                | 002<br>101<br>202                                      | 45.17<br>31.51<br>65.79          | 90<br>45<br>45                | 0<br>0                                                      |
| BaRuO <sub>3</sub><br>( $20\overline{2}5$ )-oriented<br>(nine layer<br>hexagonal) | $20\bar{2}5 \\ 11\bar{2}0 \\ 22\bar{4}0 \\ 01\bar{1}5$ | 41.83<br>31.07<br>64.79<br>27.29 | 90<br>48.62<br>48.62<br>41.38 | ±1.4 <sup>c</sup><br>±1.4 <sup>c</sup><br>±6.9 <sup>c</sup> |

<sup>a</sup>The values are based on Cu  $K\alpha_1$  radiation, bulk lattice constants (see Refs. 3 and 4), and  $\phi = 0^{\circ}$  chosen to be parallel to the in-plane [100] direction of the (001) SrTiO<sub>3</sub> substrate.

 ${}^{b}\chi = 90^{\circ}$  is perpendicular to the plane of the substrate.

<sup>c</sup>Assuming degenerate epitaxy (see Ref. 6).

<sup>&</sup>lt;sup>a)</sup>Author to whom correspondence should be addressed; electronic mail: Schlom@ems.psu.edu

broad peaks of the XRD'' patterns reported by Fukushima *et al.*<sup>1</sup> in their  $\phi$  scan of the "BaRuO<sub>3</sub>(101)<sup>tetragonal</sup> peak" may be explained as broad and overlapping  $11\overline{2}0$  peaks of the 9*L* polymorph (see Table I). Our results are in full agreement with previous unsuccessful attempts to grow metastable BaRuO<sub>3</sub> by epitaxial stabilization on (100) KTaO<sub>3</sub>.<sup>8</sup>

It should be noted that the results presented by Fukushima *et al.*<sup>1</sup> are *not* inconsistent with the perovskite polymorph of BaRuO<sub>3</sub>, yet they are ambiguous given the demonstrated near overlap of all the peaks reported by them with peaks of the 9*L* (and 4*L*) polymorph. Despite our attempts to replicate their work, we cannot synthesize the metastable perovskite polymorph of BaRuO<sub>3</sub> and we would suggest additional, definitive scans for unambiguous corroboration of their interpretation of their results.

- <sup>2</sup>M. K. Lee, I. W. Scrymgeour, J. Lettieri, D. G. Schlom, and C. B. Eom (unpublished).
- <sup>3</sup>J. M. Longo and A. J. Kafalas, Mater. Res. Bull. 3, 687 (1968). The lattice

constants of the metastable perovskite polymorph of BaRuO<sub>3</sub> (pseudocubic with  $a \approx 4.01$  Å) have been estimated by extrapolating the lattice constants reported in this work for Ba<sub>x</sub>Sr<sub>1-x</sub>RuO<sub>3</sub> to x = 1.

- <sup>4</sup>*Powder Diffraction File* (International Centre for Diffraction Data, Swarthmore, PA, 1995), JCPDS card 45–529. This reference states that the 9*L* polymorph of BaRuO<sub>3</sub> has lattice constants a=5.749 Å and c=21.608 Å.
- <sup>5</sup>J. Lettieri, C. I. Weber, and D. G. Schlom, Appl. Phys. Lett. **73**, 2057 (1998).
- <sup>6</sup>S.-W. Chan, J. Phys. Chem. Solids 55, 1137 (1994).
- <sup>7</sup> Our films showed evidence of a mixture of both the four layer (4*L*) and 9*L* hexagonal polymorphs. Discrimination of the 4*L* polymorph from the perovskite phase is equally as difficult since the  $20\overline{2}3$ ,  $11\overline{2}0$ , and  $22\overline{4}0$  reflections of the 4*L* structure also exhibit a near overlap of peak position and intensity with the perovskite polymorph (and with the  $20\overline{2}5$ ,  $11\overline{2}0$ , and  $22\overline{4}0$  reflections of the 9*L* polymorph). A  $\phi$  scan of the  $01\overline{1}5$  reflection of the 9*L* polymorph or the  $01\overline{1}2$  reflection of the 4*L* polymorph is sufficient to distinguish between these two phases. Nevertheless, in none of our films grown under a wide range of growth conditions by both sputtering and pulsed laser deposition was the perovskite polymorph evident.
- <sup>8</sup>H.-M. Christen, L. A. Boatner, J. D. Budai, M. F. Chisholm, L. A. Gea, D. P. Norton, C. Gerber, and M. Urbanik, Appl. Phys. Lett. **70**, 2147 (1997).

<sup>&</sup>lt;sup>1</sup>N. Fukushima, K. Sano, T. Schimiza, K. Abe, and S. Komatsu, Appl. Phys. Lett. **73**, 1200 (1998).