

Growth of (103) fiber-textured SrBi 2 Nb 2 O 9 films on Pt-coated silicon

G. Asayama, J. Lettieri, M. A. Zurbuchen, Y. Jia, S. Trolier-McKinstry, D. G. Schlom, S. K. Streiffer, J-P. Maria, S. D. Bu, and C. B. Eom

Citation: Applied Physics Letters **80**, 2371 (2002); doi: 10.1063/1.1463697 View online: http://dx.doi.org/10.1063/1.1463697 View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/80/13?ver=pdfcov Published by the AIP Publishing

Articles you may be interested in

Influence of miscut Y 2 O 3 -stabilized Zr O 2 substrates on the azimuthal domain structure and ferroelectric properties of epitaxial La-substituted Bi 4 Ti 3 O 12 films J. Appl. Phys. **100**, 064101 (2006); 10.1063/1.2345576

Effects of tantalum adhesion layer on the properties of SrBi 2 Ta 2 O 9 ferroelectric thin films Appl. Phys. Lett. **79**, 3833 (2001); 10.1063/1.1423405

Growth and characterization of non- c -oriented epitaxial ferroelectric SrBi 2 Ta 2 O 9 films on buffered Si(100) Appl. Phys. Lett. **77**, 3260 (2000); 10.1063/1.1324982

Ferroelectric Bi 4 Ti 3 O 12 thin films on Pt-coated silicon by halide chemical vapor deposition J. Appl. Phys. **88**, 2819 (2000); 10.1063/1.1288499

Spin-coated ferroelectric SrBi 2 Nb 2 O 9 thin films Appl. Phys. Lett. **73**, 126 (1998); 10.1063/1.121705

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 128.84.143.26 On: Tue, 16 Jun 2015 17:59:21

Growth of (103) fiber-textured SrBi₂Nb₂O₉ films on Pt-coated silicon

G. Asayama, J. Lettieri, M. A. Zurbuchen, Y. Jia, S. Trolier-McKinstry, and D. G. Schlom^{a)} Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16803-6602

S. K. Streiffer

Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439

J-P. Maria

Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695

S. D. Bu and C. B. Eom

Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706-1687

(Received 28 August 2001; accepted for publication 1 February 2002)

(103) fiber-textured $SrBi_2Nb_2O_9$ thin films have been grown on Pt-coated Si substrates using a SrRuO₃ buffer layer. High-resolution transmission electron microscopy reveals that the fiber texture arises from the local epitaxial growth of (111) SrRuO₃ grains on (111) Pt grains and in turn (103) SrBi₂Nb₂O₉ grains on (111) SrRuO₃ grains. The films exhibit remanent polarization values of 9 μ C/cm². The uniform grain orientation (fiber texture) should minimize grain-to-grain variations in the remanent polarization, which is important to continued scaling of ferroelectric memory device structures. © 2002 American Institute of Physics. [DOI: 10.1063/1.1463697]

Since the discovery of high-fatigue resistance in bismuth-based layered ferroelectrics (Aurivillius phases¹), and in particular SrBi₂Nb₂O₉ and SrBi₂Ta₂O₉,² these materials have been extensively investigated for ferroelectric random-access memory (FRAM) applications.³ To achieve high-storage density with continued feature-size reduction, it is desired to prepare ferroelectric films in which the remanent polarization (P_r) is not only high, but also equal for every capacitor in the memory structure.

Previously, we reported⁴ the growth of $SrBi_2Nb_2O_9$ thin films with a P_r of 15.7 μ C/cm²—over 25% higher than the highest reported value for randomly oriented polycrystalline SrBi₂Nb₂O₉ films.⁵ These (103)-oriented SrBi₂Nb₂O₉ films were epitaxially grown on (111) SrTiO₃ substrates with (111)-oriented SrRuO₃ epitaxial bottom electrodes. Such ferroelectric capacitors have not only high P_r , but also uniform P_r across the entire film, since the film is epitaxial. Preparation of films with these desired ferroelectric properties have, however, required the use of small and costly single-crystal oxide substrates. Recently, the growth of non*c*-oriented $SrBi_2Ta_2O_9$ epitaxial films on (100) Si substrates, including (103) SrBi₂Ta₂O₉ films, has been achieved using a sequence of intermediate epitaxial layers.^{6,7} The P_r of the reported films on silicon has, however, been rather low: 5.2 μ C/cm² in the best case.⁷

In this letter, we show that high P_r (and a concomitant uniformity in P_r) can be achieved on practical Pt-coated silicon substrates using local epitaxy to impart the (111) fiber texture of a platinum film into a fiber-textured (103) SrBi₂Nb₂O₉ film.

Previous research has shown that the fiber texture of

Pt-coated silicon is not inherited by SrBi₂Nb₂O₉ or SrBi₂Ta₂O₉ films when they are grown directly on (111) fiber-textured platinum.^{8,9} This is not surprising considering the differences in crystal structure, lattice constant, electronic structure, and especially the chemical reactivity of platinum with these bismuth-based compounds. $^{9-11}$

Although randomly oriented polycrystalline SrBi₂(Ta,Nb)₂O₉ films are currently widely used for FRAMs, the P_r of each grain is different. This grain-to-grain variation in P_r results in severe nonuniformity in P_r as the capacitor area approaches the grain size,¹² which poses a technological scaling problem and results in the measured P_r (averaged over many grains) to be only about half as high as it could be in an optimally oriented SrBi₂(Ta,Nb)₂O₉ film.¹³ In contrast to randomly oriented SrBi₂Nb₂O₉ films, however, the orientation perpendicular to the parallel-plate electrodes (for planar capacitor structures) is the same for all grains in epitaxial and fiber-textured films.

We have investigated the use of an intermediate layer to orientation control in the growth achieve of SrBi₂(Ta,Nb)₂O₉ films on Pt-coated silicon substrates. SrRuO₃ works well in this regard. It has an excellent lattice match to silicon (Pt has a=3.924 Å and SrRuO₃ has a = 3.925 Å).^{14,15} SrRuO₃ has been shown to grow in an oriented fashion on Pt-coated silicon substrates with (111) SrRuO₃|| (111) Pt.¹⁶ As SrRuO₃ is conductive, its use as a buffer layer will not affect the hysteresis characteristics of the ferroelectric. Additionally, unlike the direct deposition of SrBi₂(Ta,Nb)₂O₉ on platinum, the strong chemical stability of the Pt/SrRuO₃ and SrRuO₃/SrBi₂(Ta,Nb)₂O₉ interfaces minimizes reaction between the platinum and SrBi₂(Ta,Nb)₂O₉ layers.

The means by which the (111) fiber texture of a Ptcoated silicon wafer can be used to impart (103) fiber texture

^{a)}Electronic mail: schlom@ems.psu.edu

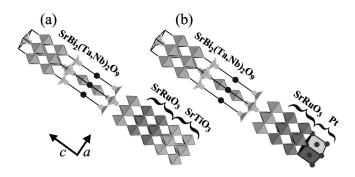


FIG. 1. Schematic showing (a) the established epitaxial orientation relationship of (103) SrBi₂Nb₂O₉ on (111) SrRuO₃ on (111) SrTiO₃ and (b) the local epitaxial relationship a top a single platinum grain for the growth of (103) fiber-textured SrBi₂Nb₂O₉ on (111) SrRuO₃ on (111) Pt-coated Si. The SrBi₂Nb₂O₉ is drawn and its unit cell is outlined in its tetragonal state above its Curie temperature. The direction of the a and c axes of SrBi₂Nb₂O₉ (below its Curie temperature) are indicated.

on a $SrBi_2(Ta,Nb)_2O_9$ film is shown schematically in Fig. 1. The approach used is analogous to that demonstrated for the epitaxial growth of (103) SrBi₂Nb₂O₉ on (111) SrTiO₃ (also shown in Fig. 1)⁴ with (111) Pt taking the place of (111) SrTiO₃. The epitaxial alignment shown takes place locally on each grain of (111)-oriented platinum in the (111) fibertextured Pt-coated silicon film, leading to a fiber-textured (103) SrBi₂Nb₂O₉ film on a fiber-textured (111) SrRuO₃ film on the fiber-textured (111) Pt-coated silicon substrate. This approach is related to the perovskite "template" technique developed by Ramesh et al. for the growth of (001) fibertextured ferroelectric¹⁷ and colossal magnetoresistance¹⁸ perovskite films on silicon substrates.

SrRuO₃ thin films were grown in situ by pulsed-laser deposition (PLD) using a KrF excimer laser (248 nm, Lambda Physik EMG 103MSC) in an on-axis geometry. The SrRuO₃ films were grown in 100 mTorr O₂ at 600 °C using a stoichiometric target. A laser pulse energy of 140 mJ, fluence of $2-3 \text{ J/cm}^2$, and a 5 Hz pulse rate were used to grow films about 0.3 μ m thick. The same oxygen pressure used for growth was introduced as the $Pt/Ti/SiO_2/(100)$ Si substrates were heated above ${\sim}350\,^{\circ}\mathrm{C}$ to minimize titanium diffusion from the 20-nm-thick titanium adhesion layer into the platinum layer.¹⁹⁻²¹ The SrBi₂Nb₂O₉ films were grown in 70 mTorr of mixed O_3/O_2 (~ O_3 8%) at a substrate temperature of 874 °C. A laser pulse energy of 160 mJ, fluence of 2-3 J/cm^2 , and a 4 Hz pulse rate were used to grow $SrBi_2Nb_2O_9$ films 0.5–0.75 μ m thick. A single target with a Sr:Bi:Nb atom ratio of 1:2.3:2 was used as the source material. After growth, the films were quenched in 1 atm of oxygen. Details concerning target fabrication and optimization of the growth of these bismuth-based compounds are given elsewhere.²²

Heterostructures composed of an overlying (103)oriented fiber-textured SrBi2Nb2O9 film on an underlying (111) fiber-textured SrRuO₃ electrode on a (111) fibertextured 150 nm Pt/20 nm Ti/1 μ m SiO₂/(100) Si substrate were prepared and investigated both structurally and electrically. For electrical measurements, 50 μ m diam top platinum electrodes were deposited on the films through a shadow mask by e-beam evaporation. Ferroelectric hysteresis loops were traced out by stimulating the sample with a 20 kHz triangle wave (Tektronix AFG310), and collecting displacement current using a virtual ground current amplifier (Stan-

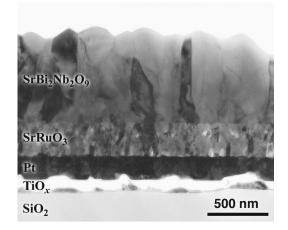


FIG. 2. Cross-sectional TEM image of a (103) fiber-textured SrBi₂Nb₂O₉/ (111) fiber-textured SrRuO₃/(111) fiber-textured Pt/Ti/SiO₂/(100) Si film. The underlying (100) Si substrate is not shown.

ford Research Systems SR570). This current was integrated to yield the loop. By monitoring leakage current after switching had occurred and at the maximum electric field applied to the sample, it was verified that leakage contributed no more than $2-3 \ \mu C/cm^2$ to the remanent polarization reported here. The high speed of the test compared to more standard methodologies was required to separate leakage and polar-

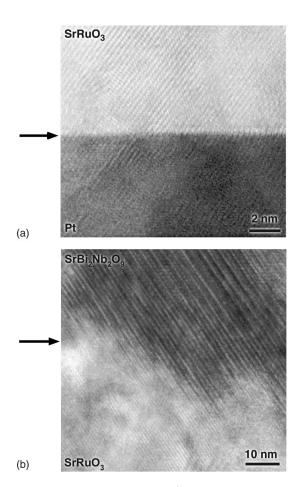


FIG. 3. HRTEM images of the interfaces (indicated by the position of the arrows) at either end of a single SrRuO3 grain. (a) HRTEM image of the SrRuO₃/Pt interface and (b) HRTEM image of the SrBi₂Nb₂O₉/SrRuO₃ interface. The continuity in the lattice planes across the interfaces indicates that local epitaxy occurred. These HRTEM images are from the same film as the TEM image in Fig. 2.

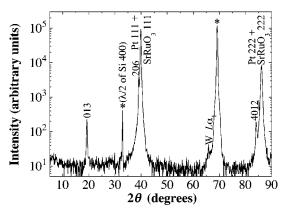


FIG. 4. θ -2 θ x-ray diffraction scan of the same film on which the TEM image in Fig. 2 was made indicating that the SrBi₂Nb₂O₉ film is (103) oriented. The substrate peaks are labeled as (*).

ization contributions to the measured displacement current.

A cross-sectional TEM image of the entire (103) SrBi₂Nb₂O₉/(111) SrRuO₃/(111) Pt/Ti/SiO₂/Si heterostructure is shown in Fig. 2. The SrBi₂Nb₂O₉ layer consists of columnar grains with average diameters of about 150 nm. Higher-magnification images of the SrBi₂Nb₂O₉/SrRuO₃ and SrRuO₃/Pt interfaces of this same film by HRTEM reveal that local epitaxy occurred across both interfaces for each grain. This is manifested by the continuity of the lattice planes across both the SrRuO₃/Pt and SrBi₂Nb₂O₉/SrRuO₃ interfaces in Fig. 3. Through local epitaxy the underlying (111)-oriented $SrRuO_3$ grain in Fig. 3(a) has inherited its (111) orientation from the underlying platinum grain. Similarly, the SrBi₂Nb₂O₉ grain in Fig. 3(b) has inherited its (103) orientation from the underlying SrRuO₃ grain through local epitaxy. Local epitaxy was verified on multiple grains in the TEM and always had the orientation relationship shown in Fig. 1(b).

The occurrence of local epitaxy on a macroscopic scale was revealed by x-ray diffraction scans. The θ - 2θ x-ray diffraction scan shown in Fig. 4(a) shows that globally the SrBi₂Nb₂O₉ layer is (103) textured and the platinum layer is (111) textured. The full width at half maximum (FWHM) of the 206 reflection of SrBi₂Nb₂O₉ is 0.24° and 2.60° in 2θ and ω , respectively. No peaks indicating other orientations of the SrBi₂Nb₂O₉, SrRuO₃, or platinum layers are seen in this scan. Note that the 111 and 222 SrRuO₃ peaks overlap the 111 and 222 Pt peaks. To confirm the macroscopic (111) texture of the SrRuO₃ layer, a χ scan of the 110 SrRuO₃ peak¹⁵ was made and a clear peak with a FWHM of 4.0° in χ was observed. The 110 peak of platinum is forbidden, but is very intense for SrRuO₃, making this a good reflection to check the macroscopic orientation of the SrRuO₃ layer.

The electric displacement–electric field hysteresis of a (103)-oriented fiber-textured SrBi₂Nb₂O₉ film grown on Ptcoated silicon is shown in Fig. 5. The P_r and coercive field (E_c) were determined to be 9 μ C/cm² and 150 kV/cm, respectively. Note that these results are for a relatively hightemperature deposition process (874 °C) optimized for epitaxial quality. Improvements in ferroelectric loop shape are expected from lower-temperature deposition processes.

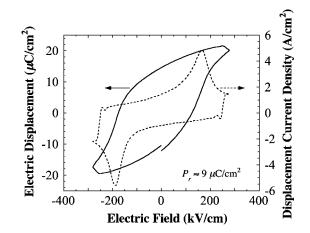


FIG. 5. Electric displacement–electric field hysteresis curve. The displacement current density–electric field response from which the hysteresis loop was generated is also shown.

The authors gratefully acknowledge the financial support of the National Science Foundation through Grant No. DMR-0103354 for the work performed at Penn State and Grant No. DMR-9973801 for the work performed at the University of Wisconsin, the U.S. Department of Energy through Contract No. W-31-109-ENG-38 for the work performed at ANL, and use of the ANL Electron Microscopy Center.

- ¹B. Aurivillius, Ark. Kemi 1, 463 (1950); 1, 499 (1950); 2, 519 (1951); 5,
- 39 (1953); B. Aurivillius and P. H. Fang, Phys. Rev. 126, 894 (1962).
- ²C. A-P. de Araujo, J. D. Cuchiaro, L. D. McMillan, M. C. Scott, and J. F. Scott, Nature (London) **374**, 627 (1995).
- ³O. Auciello, J. F. Scott, and R. Ramesh, Phys. Today **51**, 22 (1998).
- ⁴J. Lettieri, M. A. Zurbuchen, Y. Jia, D. G. Schlom, S. K. Streiffer, and M. E. Hawley, Appl. Phys. Lett. **75**, 2827 (1999).
- ⁵K. Watanabe, M. Tanaka, E. Sumitomo, K. Katori, H. Yagi, and J. F. Scott, Appl. Phys. Lett. **73**, 126 (1998).
- ⁶H. N. Lee, S. Senz, N. D. Zakharov, C. Harnagea, A. Pignolet, D. Hesse, and U. Gösele, Appl. Phys. Lett. **77**, 3260 (2000).
- ⁷H. N. Lee, S. Senz, A. Pignolet, and D. Hesse, Appl. Phys. Lett. **78**, 2922 (2001).
- ⁸J. S. Lee, H. H. Kim, H. J. Kwon, and Y. W. Jeong, Appl. Phys. Lett. **73**, 166 (1998).
- ⁹N. Fujimura, D. T. Thomas, S. K. Streiffer, and A. I. Kingon, Jpn. J. Appl. Phys., Part 1 37, 5185 (1998).
- ¹⁰C. D. Gutleben, Appl. Phys. Lett. **71**, 3444 (1997).
- ¹¹ Y. Shimakawa and Y. Kubo, Appl. Phys. Lett. **75**, 2839 (2000).
- ¹²A. Gruverman, Appl. Phys. Lett. **75**, 1452 (1999).
- ¹³T. Takenaka and K. Sakata, Jpn. J. Appl. Phys. **19**, 31 (1980).
- ¹⁴Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, edited by K.-H. Hellwege and A. M. Hellwege, New Series, Group III (Springer, Berlin, 1971), Vol. 6, p. 20; (Springer, Berlin, 1977), Vol. 7, Part f, p. 743.
- ¹⁵ SrRuO₃ can be considered as a pseudocubic perovskite with $a \approx 3.925$ Å. Pseudocubic indexing is used throughout this manuscript for SrRuO₃.
- ¹⁶J. Yin, Z. G. Liu, and Z. C. Wu, Appl. Phys. Lett. 75, 3396 (1999).
- ¹⁷R. Ramesh, T. Sands, and V. G. Keramidas, J. Electron. Mater. 23, 19 (1994).
- ¹⁸ J. Y. Gu, C. Kwon, M. C. Robson, Z. Trajanovic, K. Ghosh, R. P. Sharma, R. Shreekala, M. Rajeswari, T. Venkatesan, and R. Ramesh, Appl. Phys. Lett. **70**, 1763 (1997).
- ¹⁹J. O. Olowolafe, R. E. Jones, Jr., A. C. Cambell, R. I. Hegde, C. J. Mogab, and R. B. Gregory, J. Appl. Phys. **73**, 1764 (1993).
- ²⁰ K. Sreenivas, I. Reaney, T. Maeder, N. Setter, C. Jagadish, and R. G. Elliman, J. Appl. Phys. **75**, 232 (1994).
- ²¹ J. Im, A. R. Krauss, A. M. Dhote, D. M. Gruen, O. Auciello, R. Ramesh, and R. P. H. Chang, Appl. Phys. Lett. **72**, 2529 (1998).
- ²²J. Lettieri, Y. Jia, S. J. Fulk, D. G. Schlom, M. E. Hawley, and G. W. Brown, Thin Solid Films **379**, 64 (2000).