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Structural distortion of ferroelectric thin films caused by film strain has a strong impact on the
microwave dielectric properties. SrTiGhin films epitaxially grown on(110 DyScO; substrates
using molecular beam epitaxy are extremely straitiegl, ~1% in-plane tensional strairfrom
3.905 A of bulk SrTiQ. The room-temperature in-plane dielectric constant and its tuning of the
films at 10 GHz are observed to be 6000 and 75% with an electric field ofdnV fespectively.

The control of strain in SrTiQ provides a basis for room-temperature tunable microwave
applications by elevating its phase-transition peak to room temperatu280®American Institute

of Physics[DOI: 10.1063/1.1813641

I. INTRODUCTION In this article, the film structure and microwave dielectric
fproperties for highly strained SrTiJilms are analyzed and
characterized for room-temperature tunable microwave ap-
plications.

The dc electric-field-dependent dielectric constant o
ferroelectric thin films, such as BgSKTiO; (BST, 0<X
=<1), is currently being used to develop high dielectric
Q (=1/tand) tunable microwave devices, such as voltage-
controlled oscillators, tunable filters, and phase shiftets.
The Curie temperatur€lc) of the bulk BST varies almost SrTiO; thin films of various thicknesse€l00-, 200-,
linearly with the composition,X, in the solid solution 300-, 500-, and 1000-A thigkhave been deposited onto
Bay xSixTiO3. For a particular application temperature, the (110) DyScO; single-crystal substrates at 650 °C by mo-
composition is adjusted to move the ferroelectric phase tranecular beam epitaxﬁff'lg DyScQ; crystal substrate is a
sitions to the range of the device application temperature.nMO, orthorhombic structuréPbnm (Refs. 20 and 2L
Normally, BasSrsTiO3 and Ba Sl 4TiO3, Whose phase with anisotropic dielectric propertiggable I). A continuous
transitions are 250 and 280 K, respectively, are used for gux of molecular oxygen mixed with 10% ozone was con-
room-temperature application because they are paraelectrifolled to yield a background pressure of %Q07 Torr.
phasedi.e., low dielectric losp but still show nonlinear di- The average incident flux of both the Sr and Ti sources was
electric propertiegi.e., high dielectric tuningat room tem-  maintained constant at 1010 cm™2 s to achieve a layer-
perature. SITiQ (i.e., Ba_xSiTiO3, X=1) is known as an  py-layer growth of Sr and Ti in a sequential manner. Reflec-
incipient ferroelectric material, whose ferroelectric phasetion high-energy electron diffractiotRHEED) intensity os-
transition is suppressed by quantum fluctuations and whos@llations were used to adjust the stoichiometry of the Sr and
nonlinear dielectric properties are exhibited only at very lowTj molecular beams and ensure that a complete monolayer of
temperaturegi.e., below 65 K.*® Therefore, it has been each cation was deposited in each shuttered ofjee 6.6
considered only for low-temperature applicatidns. x 10 atoms/cni? of the monolayer dosgs® X-ray diffrac-

Strain is one of the important factors affecting the ferro-tion (XRD) and atomic force microscopyAFM) were used
electric properties because the strain is directly coupled withor film structure and surface morphology characterization.
the ionic polarization in a ferroelectrfc™ It has been dem- Interdigitated capacitordDC) were deposited on top of
onstrated that strain affects the ferroelectric phase transitiomhe SrTiQ, films (100-, 200-, 500-, and 1000-A thigk
the dielectric constant, and the dielectric tunfﬁ‘gl.7 For  through a polymethylmethacrylate lift-off mask by e-beam

compressive strain, the ferroelectric phase-transition peakvaporation of 1.5zm-thick Ag with an adhesive thin layer
shifts to a lower temperature, resulting in a decreased dielec-

tric CQnStant anq tuning, whereas for tensional Straina. theABLE 1. The lattice parameter and dielectric constant of the DyScO
opposite effect is observed. Recently, extremely strainedingle-crystal substrate.
(~1% tensional strainbut unit-cell level smooth epitaxial

II. EXPERIMENT

SITiO; films have been successfully deposited on Lattice parametér Dielectric constarit

(110 DyScOy substraf[es using a mo!ecglgr beam epitaxy a 5.440 A o1 220
(MBE) at Pennsylvania State University® (i.e., normally, b 5713 A £rr 18.8
~1% strain is known as a fracture strain for oxide mateyials c 7.887 A £33 355

“Reference 21.
dElectronic mail: chang@estd.nrl.navy.mil PReference 19.
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FIG. 1. A typical XRD pattern of SrTi@ thin films deposited on S
(110 DyScO; substrates. %
=
of Cr and a protective thin layer of Au. The microwave di- 5
electric properties, capacitance, and devgref the SrTiQ =
thin films, were measured as a function of frequency

(45 MHz—20 GH2, dc bias voltage(-40 to 40 \), and ‘ s s
temperature(10 to 330 K. S;; measurements were made 1225 1230 1235 1240 1245 1250

using interdigitated capacitors probed by a 20@- pitch 26 [degrees]

Picoprobe microwave probe, which was connected to an HP _ _
B510C network analyzer. The measureg G were fited 1%, % 30 pers ot synmere 004 peske andt) e
to a parallel resistor-capacitor model to determine the capackm thickness.

tance and devic of the films. The dielectric constant and
dielectric loss(tané) of the films was extracted from the
device capacitance, the devi€ and the IDC capacitor di-
mensions through a conformal mapping technitfue.

cating that the edge of SrTiunit cell is rotated 45° and
135° from the substrate edge in these particular substrates.
The lattice parameters of the SrTjGhin films calcu-
lated from an analysis of the XRD dagaith the exception
ll. RESULTS AND DISCUSSION of the 100-A-thick SrTiQ film) are presented in Table II.
A. Film structure and surface morphology The XRD peak for the 100-A-thick SrTigilm is too weak
Figure 1 shows @-26 XRD scan for SrTiQ thin film ar_ld broad_ to dete_rml_ne the peak pos_ltlon because the film
(1000-A thick deposited ontd110) DyScO; single-crystal th|ckne§s is too thlmFlg. 2). As shown in Table_ll, the nor- _
bstrates at 650 °C by MBE. As shown in the fiqure themal lattice paramgter_ls cqmpressed and the in-plane lattice
%rrial direction to the )gurface. of the Srgi@ms isgonI, barameter of SITiQ fims is extended from the 3.905 A
001] SITIO,. Al Aa/A K tr;E lectrod yd _value of bulk SrTiQ. A measurement error greater than
E)ositedrolntg theS ?iilrﬁ agpe:rsp%athero;??D ?)aett(::nrolzgrs thgs %QOOlA in _the Iattipg parameter in Table I arjses from an
[00T-oriented SrTIQ films (100-, 200-, 300-, 500-, and ncertainty in the fitting procedure to determine the peak

: . position, which is mainly due to insufficient XRD peak in-
rtos(z-aA)ﬂ;lr??’ir:hti;a;t)tllgrelepg; ?Q; e;ﬁr;s(i: l)ovr:grz]z;:ﬁ?ﬁegor'tensities for very thin filmsi.e., <500-A thick), even though
L o i fficient f ge., 10~2 i [
from the XRD patterns of symmetri®@04) and asymmetric a sufficient number of scarge., 10~20 scangis used in

. . .~ the XRD summation mode; and possibly due to a broader
(024) reflections(Fig. 2). In cases where the XRD peak in- yiqyip ion in the lattice parameter as the film thickness is

tensity frqr_n the films was not cl_ear enough to determine thereduced. Table Il shows a higher uncertainty in the in-plane
gifak ptpsmont,tthe >f<RD summattl.onzmodilwe;s used.AIsct)), th'Fattice parameter than the normal lattice parameter because
iffraction pattern for asymmetri024) refiections was ob- of the weaker and broader XRD peaks for the in-plane lattice

tearggé f&zmgaam%ﬁ?g;s?gf )Sirf?éc?tci):r:@ﬁcegssn?o?neqr}e paramete(Fig. 2). Table Il shows the film strains from the
K g . measured lattice parameters, and also includes the in-plane
DyScO; substrate with the SrTi©(004) reflections were P P

used as an internal standard to reduce errors associated with

measurement. Each SrTj@004) diffraction peak was fitted TABLE II. The lattice parameter of SrTigilms with different film thick-
with two Gaussian functions by considering four factors of 1©55¢° and the corresponding XRD peak widths in 2theta.

peak shapéthe rat_ios of height, width, area &fa; andKa, FWHM(kay) FWHM(Kary)
peaks, and the distance betwaea; and Ka, peak$ after  ThicknessA]  anoma [A] [degreed @ pane[A]  [degreed
removing the background, while the SrEi@24) diffraction

peak was fitted with one Gaussian function. It is worth not- 1000 3.883:0.001 0.2 8.941+0.001 03
ing that the asymmetric SrTiX024) reflections were ob- >00 3.88220.001 0.3 3.9320.002 04
9 y 300 3.882+0.002 0.4 3.931+0.003 0.7

tained only after the substrate was rotated by 45° and 135°in 3.881+0.002 05 3.937+0.004 09
the substrate plane with respect to the substrate edge, indi
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TABLE IIl. SrTiOj film strains with different film thicknesses. 6000T — As-eposited 10GHz
= 50001 —- Annealed
Normal In-plane In-plane S
strain strain strain g 40001
. S S
Thickness[A] (XRD) (Estimatior?) (XRD) § 3000
1000 -0.0056 0.0098 0.0092 8 |
o 2000
500 -0.0059 0.0102 0.0069 S
300 -0.0059 0.0102 0.0067 1000
200 -0.0062 0.0106 0.0082 0 .

- - - —— -40  -20 0 20 40
®Estimated in-plane strain from measured normal strain with=-x, dc bias [V]
(C11/2Cy,), wherex, ,, X3, andC are in-plane, normal film strain, and elastic

constants for SrTiQ 020
0.184 (b)

strain estimated from the normal strain based on XRD data, 8
which shows higher accurac§fables Il and 1l). The in- 2 0.16
plane lattice parameter of the films is extremely extended § 0.141
from the 3.905 A value of bulk SrTigXi.e., ~1%). !

Figure 3 shows an AFM image of a SrTjCfilm 0.12 4
(200-A thick). The film surface is extremely smooth with a
surface rms roughness of 3.880 A, which is approximately 0-10 40 20 0 20 40
the same as one unit cell of the SrEi@m (Table ). The dc bias [V]

grain size is about 400500 A. Figure 3 shows typical AFM FG. 4 R . tures) dielectr ant of SITiOthin fi

h . . . . 4. oom-temperatur lelectric constant O rii In 1ms
Images fo_r the _Other SrTlip_f”mS (i.e., 300-, 500-, a_nd (500-A-thick as-deposited and annegladd(b) dielectric losgtan ) of the
1000-A thicK. It is worth noting that the severely strained as-deposited film at 10 GHgap=6.m).

(i.e.,~1%) SrTiO; films are still in an elastic region without

any fracture even though1% strain is a typical fracture

strain for oxide materials, presumably due to the fact that th&W-temperature dielectric properties of SrEi€ingle crys-

films have a high degree of uniformity and structural perfec{lS, showing an 88% dielectric tuning at 2 h and a

tion resulted from an extremely small lattice mismagch., ~ dielectric constant of 15000 at 30 KHowever, at 300 K,
~1%) with DyScO; single-crystal substrates and a well- the dielectric properties of SrTiQcrystals reported 0% di-

controlled layer-by-layer film growth using a reactive MBE electric tuning with a dielectric constant of 40@s shown
equipped with RHEEDS19 in Fig. 4(a), the annealing effect is critical on the dielectric

properties as the annealed filire., for 30 min at 700 °C in
atmosphereshows a significantly reduced dielectric constant
(i.e., ~2500 and dielectric tunindi.e., ~60% at 1 V/jum).
Figure 4a) shows the dielectric constant of SrTi@hin Figure %a) shows the capacitance and devigeof an-
films (500-A thick) as a function of applied dc bias measurednealed SrTiQ films (500-A thick) as a function of tempera-
at 10 GHz and room temperature. The as-deposited $rTiQure and dc biagi.e., 0 V for solid lines and 40 V for dotted
film exhibits a huge dielectric consta(ite., ~6000 and a Jines) measured at 10 GHz. Figurg&p also includes the
large dielectric tuningi.e., ~85% at 4 Vjum) at room tem-  capacitance of as-deposited Srifdms (500-A thick) plot-
perature. It is also interesting to note that most of the dielected with thicker lines. Figure (6) shows the capacitance of
tric tuning of as-deposited SrTiXilm occurs at a low dc  annealed SrTi@films (100-A and 200-A thickas a function
bias field (i.e., ~75% at 1 Vjum). Such a high dielectric  of temperature and dc bias measured at 10 GHz. As shown in
tuning with a large dielectric constant of SIH@iIms at  the figure, the ferroelectric transition appears at 233, 290,
300 K in Fig. 4a) is comparable to the previously reported 285, and 290 K for annealed 100 A, annealed 200 A, an-
nealed 500 A, and as-deposited 500-A-thick films, respec-
tively, which are just below room temperature except that of
the 100-A-thick SrTiQ film. This is why the SrTiQ films
exhibit abnormal nonlinear dielectric properties with a high
dielectric constant and dielectric tuning as shown in Fig.
4(a). Also, the phase-transition peak for as-deposited
500-A-thick film (i.e., 290 K) is observed to shift to a lower
temperature(i.e., 285 K) after the annealing proceggig.
5(a)]. This is the reason that the as-deposited SgTii{dn
shows a higher dielectric constant and dielectric tuning than
the annealed SrTiQfilm at room temperaturéFig. 4(a)].
Even though it is not clear why the phase-transition peak for
the annealed film appears at a lower temperature, presumably
it is due to the possible annealing effects such as relaxed film
FIG. 3. An AFM image of SrTiQ film (200-A thick). strain and reduced oxygen vacancies, which are expected to

B. Microwave dielectric properties
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FIG. 5. (a) Capacitance and devic® of annealed SrTiQ thin film ] ©
(500-A thick) as a function of temperature and dc bias volta@e¥ for 016
lines and 40 V for dot lingsat 10 GHz (also, the capacitance of as- 1 275K
deposited film is plotted with thicker linggnd (b) the capacitance of an- 0.12 : T T 7
nealed SrTiQ films with other thicknes$100-A and 200-A thick 40 -20 Y 20 40
0.187
cause a reduced in-plane lattice constant. A typical deice
at 0 V dc bias of SrTi@films [Fig. 5a)] shows a maximum 0.16
value from 30 to 40 at 110 K and a minimum value from 10
to 20 at 275 K, which is associated with the phase-transition 0.147 (d
peak. The devic&s of the films, which look too low to be 1 300K
applied to real devices, is believed to be mostly due to the 012+ . . . .
dielectric Q (=1/tand) because any other loss factdgi=., 40 20 0 20 40
electrode conduction, leakage current, and substrate dielec- dc bias [V]

tr?c) are gxpecteq 0 b-e much lower compargd o the dielecIEIG. 6. Capacitance of SrTihin film (500-A thick) as a function of dc

tric loss in the fllm' F|gur¢ Gb) ShOWS the dlele_ctrlc loss bias voltages at different temperatur@s 120, (b) 200, (c) 275, and(d)

(tan &) of as-deposited SrTiQthin films (500-A thick) as a 300 K at 10 GHz.

function of applied dc bias measured at 10 GHz and room

temperature. Actually, the room-temperature dielectric loss

[Fig. 4b)] is significantly highefi.e., 0.19 at 0 Y compared clearly; at a lower voltage the dielectric loss is decreased,
with the other SrTiQ films, which are deposited on MgO or and at a higher voltage the loss is increased. The dc bias
LaAlO, substrates whose phase transition occurs at very loWlependence must be related also to the phase-transition peak
temperatures(i.e., <50 K). We observed that the room- €ven though how the actual loss mechanisms are related to
temperature dielectric loss for those SrEifims (i.e., de- the phase transition is not clear at this point. In Fi@) sthe
posited on MgO or LaAl@) was less than 0.005 at 0 V with dc bias dependence of the deviQe(~1/tand) of the an-

no dielectric tuning in our previous research work. Presumhealed SrTiQ thin film (500-A thick) changes at a region of
ably, the room-temperature high dielectric loss of the SgTiO the paraelectric phase close to the phase-transition peak. Be-
films deposited on DyScgsubstrates is due to the film strain low this region(i.e., ferroelectric phagethe deviceQ in-

and well-oriented film microstructuré.e., epitaxy associ- creases with dc bias, and above this redios, paraelectric
ated with a large electric polarization close to the phasephasg the Q decreases with dc bias. This is why the dielec-
transition peak. This is because the total electric polarizatiotyric loss at room temperatuf€ig. 4b)] is observed with two

in the film depends on the magnitude of the dipole momentlifferent dc dependencies.

formed in the unit cell, which is associated with film strain, Figure 6 shows the capacitance of annealed 500-A-thick
and the coupling of the dipoles with each other, which isSrTiO; film as a function of dc bias voltagesi.e.,
related to film orientation. Therefore, the relatively high di-—40 to 40 V and 40 to —40 V with a 5 V stgjat several
electric loss of the strained epitaxial SrEi@ms must be different temperature@.e., 120, 200, 275, and 300)Kefore
related to the motion of the resulting large dipole momentsand after the phase-transition peéle., 285 K. Through

with rf signal. Also, it is worth noting that the dc bias depen- temperature-depende@-V measurements, we may get an
dence of the dielectric losfimig. 4(b)] shows two patterns idea about how the films experience the ferroelectric phase
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500 ooy peak expected from the theory and the film strain, the phase-
400 ™ measurement transition peak can be predicted well as a function of film
strain for the~1% strained films(=200-A thick), whose

strain measurements show higher accuracy.

IV. SUMMARY
. We have investigated the microwave tunable dielectric
0.20.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 properties of strained SrTiXilms. It was verified both ex-
in-plane strain [%)] perimentally and theoretically that the SrEi@m strain of

~1% is sufficient to increase the temperature of the phase-
FIG. 7. Theoretical phase-transition peak as a functi*on of film strain i”C'“d‘transition peak up to approximately room temperature. The
ing experimental datfone of the measurementise., T-=35 K with 0.1% Iti | dielectri tafit 600 d dielectri
film strain for SrTiG; film on (00)MgO) is included from our previous res_u mg arge dielectric constafite., 0 an _'_e ectric
work]. tuning (i.e., 75% at 1 Vum) at 300 K should facilitate the

use of strained SrTiQin room-temperature tunable micro-

transition over the temperature range. As it is expected, th@@ve applications.
C-V curve above the phase-transition peak do not exhibitlc H. Mueller. R R. R fsky. and . A. Miranda, IEEE Potent20s
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