

Annealing condition optimization and electrical characterization of amorphous La Al O 3/Ga As metal-oxide-semiconductor capacitors

Donghun Choi, James S. Harris, Maitri Warusawithana, and Darrell G. Schlom

Citation: Applied Physics Letters **90**, 243505 (2007); doi: 10.1063/1.2748308 View online: http://dx.doi.org/10.1063/1.2748308 View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/90/24?ver=pdfcov Published by the AIP Publishing

Articles you may be interested in Electrical characteristics and thermal stability of HfO2 metal-oxide-semiconductor capacitors fabricated on clean reconstructed GaSb surfaces Appl. Phys. Lett. **104**, 232104 (2014); 10.1063/1.4882643

Thermal stability of electrical and structural properties of GaAs-based metal-oxide-semiconductor capacitors with an amorphous La Al O 3 gate oxide Appl. Phys. Lett. **93**, 012903 (2008); 10.1063/1.2952830

1 nm equivalent oxide thickness in Ga 2 O 3 (Gd 2 O 3)/In 0.2 Ga 0.8 As metal-oxide-semiconductor capacitors Appl. Phys. Lett. **92**, 172904 (2008); 10.1063/1.2918835

High-indium-content InGaAs metal-oxide-semiconductor capacitor with amorphous La Al O 3 gate dielectric Appl. Phys. Lett. **91**, 093509 (2007); 10.1063/1.2776846

Unpinned metal gate/high- κ GaAs capacitors: Fabrication and characterization Appl. Phys. Lett. **89**, 043501 (2006); 10.1063/1.2234837

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 128.84.143.26 On: Mon. 11 May 2015 13:59:21

Annealing condition optimization and electrical characterization of amorphous LaAIO₃/GaAs metal-oxide-semiconductor capacitors

Donghun Choi^{a)} and James S. Harris Solid State and Photonics Laboratory, Stanford University, Stanford, California 94305

Maitri Warusawithana and Darrell G. Schlom

Department of Material Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802-5005

(Received 17 March 2007; accepted 18 May 2007; published online 13 June 2007)

The electrical properties of amorphous LaAlO₃/GaAs metal-oxide-semiconductor capacitors fabricated using molecular-beam deposition are investigated. The surface was protected during sample transfer between III-V and oxide molecular beam epitaxy chambers by a thick arsenic-capping layer. Amorphous LaAlO₃ was deposited on $c(4 \times 4)$ and (2×4) reconstructed (100) GaAs surfaces. An annealing method, a low temperature-short time rapid thermal annealing (RTA) followed by a high temperature RTA, was developed, yielding extremely small hysteresis (~30 mV), frequency dispersion (~60 mV), and interfacial trap density (mid-10¹⁰ eV⁻¹ cm⁻²). © 2007 American Institute of Physics. [DOI: 10.1063/1.2748308]

One of the approaches to realize low power and highspeed/frequency devices is to use materials in which the carrier mobility is much higher than that of silicon, such as gallium arsenide (GaAs) or indium gallium arsenide (In-GaAs). For the past 30 years, the lack of a useful surface passivation for compound semiconductors has, however, precluded development of metal-oxide-semiconductor (MOS) devices and caused high surface recombination parasitics in scaled devices. Oxidation and metal deposition on III-V materials create a high interface trap density (D_{it}) , the former by causing considerable local lattice rearrangement and the latter by disturbing the periodic structure at the surface.^{1,2} Extra metallic arsenic (As) atoms on the surface also lead to high $D_{\rm it}$.³ The high trap density due to surface/interface defects pins the Fermi level near the energy band gap center, which prevents modulation of the surface potential with gate bias voltage in the case of a metal-oxide-semiconductor fieldeffect transistor.

The development of high performance GaAs-based MOS device applications demands proper surface treatment techniques and interfaces to reduce D_{it} . In addition, a high dielectric constant material is essential to decrease the gate leakage current and enables the continuation of MOS scaling. Many insulators, such as Si₃N₄, Ga₂O₃(Gd₂O₃),⁴ Al₂O₃,⁵ and HfO₂ (Ref. 6) are currently being explored. Amorphous LaAlO₃ on Si has shown good thermal stability, a high optical band gap (6.2 eV for amorphous LaAlO₃) and a high dielectric constant [16±2 for amorphous LaAlO₃]^{7,8}

In previous work, we illustrated what types of annealing effectively improved the interface quality of amorphous LaAlO₃ deposited on the $c(4 \times 4)$ and (2×4) surface reconstructions of (100) GaAs.⁹ Here, we introduce an optimized annealing process using a two-step annealing method that significantly reduces *C-V* hystersis, frequency dispersion, and D_{it} . We characterize the interface using capacitance-

voltage (C-V), current-voltage (I-V), and conductance-voltage (G-V) measurements.

After in situ desorption of its native oxide, a Be doped $[(1\pm0.5)\times10^{18} \text{ cm}^{-3}]$ 300 nm epitaxial GaAs layer was grown at 580 °C on p+ GaAs (100) substrate [Zn doping of $(0.5-5) \times 10^{19} \text{ cm}^{-3}$ in a Varian Gen II ultrahigh vacuum (UHV) molecular-beam epitaxy system. A thick amorphous arsenic (As) capping layer was deposited after GaAs growth using an As₂ flux (the As beam equivalent pressure $=2.5 \times 10^{-6}$ Torr) at room temperature for 1 h. The As capping layer efficiently protects the GaAs surface from oxidation and contamination during wafer transfer. The sample was transferred in air to the MBD chamber for LaAlO₃ deposition. An in situ reflection high-energy electron diffraction (RHEED) system was used to monitor the surface reconstruction pattern as the As capping layer was thermally desorbed.¹⁰ Two types of surface conditions were achieved by heating in ultrahigh vacuum: an As-rich $c(4 \times 4)$ surface at 325 °C and an As-stabilized (2×4) surface at 480 °C. These RHEED patterns suggest that there are more free As atoms at the interface of the $c(4 \times 4)$ sample than of the (2×4) sample.¹⁰⁻¹² After cooling the samples in UHV to 80 °C, a 10 nm amorphous LaAlO₃ film was deposited using elemental lanthanum, aluminum, and oxygen sources.^{7,8} After removal from MBD system and air exposure, a 100 nm thick of Al film was evaporated by e beam on the sample through a shadow mask to form the gate electrodes. The back side Ohmic contact was formed using a composite stack of 50 nm of titanium (Ti) followed by 150 nm of gold (Au).

First, we investigated the effect of forming gas furnace annealings (FGAs) (4% hydrogen and 96% N₂) on the $c(4 \times 4)$ sample. To avoid the diffusion of arsenic atoms from the GaAs surface into the LaAlO₃ layer, low temperature ($\leq 300 \,^{\circ}$ C) and long time FGAs were executed; (i) at 295 °C for 80 or 85 min, (ii) at 285 °C for 85 or 95 min.

Second, we developed a two-step annealing method for the LaAlO₃ on (2×4) reconstructed samples to decrease the *C-V* hysteresis and frequency dispersion at the same time. Based on the assumption that the *C-V* hysteresis is caused by

0003-6951/2007/90(24)/243505/3/\$23.00

Reuse of AIP content is subject to the terms at the **90, 243505-1** 128.84.143.26 On: Mon, 11 May 2015 13:59:21

^{a)}Electronic mail: donghun.choi@stanford.edu

FIG. 1. *C-V* characteristics of a LaAlO₃/ $c(4 \times 4)$ sample annealed at (a) 295 °C, 80 min FGA and (b) 295 °C, 85 min FGA. The inset of (a) shows the as-deposited $c(4 \times 4)$ sample *C-V* curves.

As diffusion from the GaAs surface into the oxide, a low temperature ($<300 \,^{\circ}$ C) short time ($<10 \,^{\circ}$ s) rapid thermal annealing (RTA) in N₂ was performed first to anneal the LaAlO₃ layer without As diffusion. This was followed by a normal high temperature RTA at 450 $^{\circ}$ C for 2 min in N₂. For the purpose of this discussion, this method will be called a low temperature spike RTA followed by a high temperature RTA (LSHT RTA) method. For comparison, a single high temperature RTA at 450 $^{\circ}$ C for 2 min in N₂ was executed after deposition of the Al gate electrodes. The *C-V* measurements were performed at frequencies of 10 kHz, 100 kHz, and 1 MHz in a shielded probe station at room temperature in the dark using an Agilent 4284A Precision *LCR* meter.

Figure 1 shows the C-Vmeasurements of LaAlO₃/ $c(4 \times 4)$ samples. The inset of Fig. 1(a) depicts C-V curves for an as-deposited samples which show small hysteresis ($\sim 60 \text{ mV}$), but large frequency dispersion ($\sim 430 \text{ mV}$). This indicates the presence of a substantial interface trap capacitance due to a large D_{it}. A 295 °C, 80 min FGA significantly reduced the frequency dispersion (100–150 mV) while still maintaining the small hysteresis ($\sim 60 \text{ mV}$) [Fig. 1(a)]. The hysteresis emerged when a sample was annealed only 5 min longer at the same temperature in Fig. 1(b). No additional improvement was achieved due to the limitation of the arsenic rich $c(4 \times 4)$ starting surface.

FIG. 2. *C-V* characteristics of a LaAlO₃/(2×4) sample annealed by (a) single post-metal- deposition RTA at 450 °C for 2 min in N₂ and (b) the LSHT RTA. The insets show (a) *C-V* curves of the as-deposited (2×4) sample and (b) the $D_{\rm it}$ measured using the high frequency conductance method.

The C-V characteristics of LaAlO₃/(2×4) surface reconstruction samples are illustrated in Fig. 2. A single postmetal-deposition RTA at 450 °C for 2 min in N2 appears to reduce the C-V hysteresis (\sim 190 mV) and frequency dispersion ($\sim 180 \text{ mV}$) [Fig. 2(a)]. However, as shown in Fig. 2(b), the LSHT RTA method significantly eliminates these undesirable problems, resulting in a C-V hysteresis of ~ 30 mV, no frequency dispersion between 100 kHz and 1 MHz, and 60 mV frequency dispersion between 10 kHz and 100 kHz. The C-V curves exhibited little change between unannealed and just a low temperature-spike RTA (LS RTA). The twostep LSHT RTA method, however, produced C-V curves with little hysteresis; a range of 255-275 °C temperature and 10-20 s duration LS RTA followed by a 450 °C, 2 min RTA produced the best results. The inset of Fig. 2(b) shows the D_{it} to be below $5 \times 10^{10} \text{ eV}^{-1} \text{ cm}^{-2}$ around midgap measured using the high frequency conductance method.13 The G-V curves were corrected for series resistance. Then peak values of $G_P(\omega)/\omega$ curves were measured for the $D_{\rm it}$ calculation.¹³ The C-V curves and D_{it} for this process are comparable to those of $Ga_2O_3(Gd_2O_3)^{.4}$ When samples were annealed at too high a temperature or for too long a time, the hysteresis increased again. Based on this result, we speculate that the

FIG. 3. (a) Leakage current density of the $LaAlO_3/(2 \times 4)$ sample shown in Fig. 2(b) (after LSHT RTA). The interfacial depth profiles of (b) Ga 3*d* and (c) As 3*d* core level of the same sample treated using the LSHT RTA method.

first LS RTA might anneal and densify the LaAlO₃ layer, which then impedes any subsequent As diffusion and charge trapping in the oxide. The second high temperature RTA then anneals the interface and rearranges the As atoms, resulting in a low D_{it} . Further experiments are in progress to analyze the LSHT RTA effect. In Fig. 3(a), low gate leakage current is also maintained after these annealings. Figure 3(b) and 3(c) illustrate the interfacial depth profile of Ga and As 3*d* core levels of a LSHT RTA sample measured by x-ray photoelectron spectroscopy. It reveals no As_2O_3 or Ga_2O_3 either at the interface or in the oxide.

In summary, we have optimized the annealing condition for LaAlO₃/GaAs MOS capacitors. The GaAs surfaces were protected by a thick As cap layer during sample transfer, which was subsequently desorbed under UHV prior to the LaAlO₃ deposition. The annealing effects on the two differently reconstructed GaAs surfaces illustrate the relationships between the starting surface condition and the resultant interface trap density level. The As-rich $c(4 \times 4)$ surface led to a larger frequency dispersion in the *C-V* characteristics, which is most likely due to a high interface trap density. Most importantly, the LSHT RTA method efficiently reduces the D_{it} , the bidirectional *C-V* hysteresis, and frequency dispersion, while still maintaining a reasonable leakage current level. MOS transistor fabrication and similar characterization of *n*-type samples are in progress.

This work is supported by the Intel III-V project and the SRC Non-classical Research Center.

- ¹W. E. Spicer, P. Chye, P. Skeath, C. Y. Su, and I. Lindau, Inst. Phys. Conf. Ser. **50**, 216 (1980).
- ²W. E. Spicer, I. Lindau, P. Skeath, C. Y. Su, and P. Chye, J. Vac. Sci. Technol. **17**, 1019 (1980).
- ³R. P. H. Chang, T. T. Sheng, C. C. Chang, and J. J. Coleman, Appl. Phys. Lett. **33**, 341 (1978).
- ⁴M. Passlack, M. Hong, J. P. Mannaerts, R. L. Opila, S. N. G. Chu, N. Moriya, F. Ren, and J. R. Kwo, IEEE Trans. Electron Devices **44**, 214 (1997).
- ⁵P. D. Ye, G. D. Wilk, J. Kwo, B. Yang, H.-J. L. Gossmann, M. Frei, S. N. G. Chu, J. P. Mannaerts, M. Sergent, K. K. N. M. Hong, and J. Bude, IEEE Trans. Electron Devices **24**, 209 (2003).
- ⁶J. Morais, L. Miotti, G. V. Soares, S. R. Teixeira, R. Pezzi, K. P. Bastos, I. J. R. Baumvol, A. L. P. R. Baumvol, J. J. Chambers, M. R. Visokay, and
- L. Colombo, Appl. Phys. Lett. **81**, 2995 (2002).
- ⁷L. F. Edge, D. G. Schlom, S. A. Chambers, E. Cicerrella, J. L. Freeouf, B. Hollander, and J. Schubert, Appl. Phys. Lett. **84**, 726 (2004).
- ⁸L. F. Edge, D. G. Schlom, P. Sivasubramani, R. M. Wallace, B. Hollander, and J. Schubert, Appl. Phys. Lett. 88, 112907 (2006).
- ⁹D. Choi, M. Warusawithana, C. O. Chui, J. Chen, W. Tsai, D. G. Schlom, and J. S. Harris, Mater. Res. Soc. Symp. Proc. (to be published).
- ¹⁰I. Karpov, N. Venkateswaran, G. Bratina, W. Gladfelter, A. Franciosi, and L. Sorba, J. Vac. Sci. Technol. B **13**, 2041 (1995).
- ¹¹H. H. Farrell and C. J. Palmstrom, J. Vac. Sci. Technol. B 8, 903 (1990).
 ¹²A. Ohtake, M. Ozeki, T. Yasuda, and T. Hanada, Phys. Rev. B 65, 165315 (2002).
- ¹³E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Techonlogy (Wiley, New York, 2003), p. 197.