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The structure and electrical properties of LaAlO3/n-In0.53Ga0.47As metal-oxide-semiconductor
capacitors deposited by molecular-beam epitaxy were investigated. Transmission electron
microscopy revealed a sharp interface between the dielectric and InGaAs. Postdeposition annealing
at 440–500 °C significantly reduced the capacitive equivalent thickness and frequency dispersion.
A hysteresis of 15 mV–0.1 V, a dielectric permittivity of 17±1, and a dielectric strength of
�4.3 MV/cm were measured. Additionally, a high loss in the parallel conductance and gate-bias
independence in the inversion region was observed, implying the fast generation rate of minority
carriers in In0.53Ga0.47As. © 2007 American Institute of Physics. �DOI: 10.1063/1.2776846�

Due to limits to scaling of silicon, the use of alternative
III-V compound semiconductor channels such as
In�0.53Ga�0.47As and InSb in complementary metal-oxide-
semiconductor �MOS� devices is becoming attractive due to
their higher electron mobilities and smaller band gaps.1–3 It is
surmised that integration of a high quality gate dielectric
may help reduce gate leakage and improve Ion/ Ioff ratio in
such devices. Recently In�0.3Ga�0.7As devices with various
high dielectric constant �high-�� insulators showing superior
electrical properties have been demonstrated.4–6 In this letter
we describe the physical and electrical characteristics of thin
amorphous lanthanum aluminate �LaAlO3� deposited on
In0.53Ga0.47As.

Silicon-doped In0.53Ga0.47As layers were grown on �001�
InP substrates in a GEN II molecular-beam epitaxy �MBE�
system at the University of Oklahoma. To minimize the
dielectric/III-V layer interface defect density, the InGaAs
samples were capped with arsenic7 and shipped in a vacuum
container to Penn State University. The cap was desorbed in
a Veeco 930 MBE system in the absence of arsenic overpres-
sure. Amorphous LaAlO3 was then deposited as described
elsewhere.8–14 Reflection high-energy electron diffraction
showed the LaAlO3 to be amorphous. Tungsten �W� was
evaporated ex situ either on as-deposited or postdeposition
annealed �PDA� dielectric film to form the gate electrode and
subsequently a MOS capacitor �MOSCAP�. Evaporated in-
dium or Ni–Ge–Au alloy formed Ohmic contact.

The structural integrity, dielectric physical thickness
�toxide,� and electrical characteristics in MOSCAPs were de-
termined by cross-sectional high-resolution transmission
electron microscopy �HRTEM�, spectroscopic ellipsometry,

capacitance-voltage �C-V�, and current density–voltage �J-V�
measurements. The LaAlO3 film stoichiometry was estab-
lished by medium energy ion scattering �MEIS� technique
and Rutherford backscattering spectrometry.10,11

The absence of an interfacial layer �IL� between amor-
phous LaAlO3/Si has been previously noted.12 A comprehen-
sive thermodynamic analysis of the stability of binary oxides
in contact with III-V semiconductors15 indicates no expected
reactions between La2O3 or Al2O3 with GaAs or InAs and
thus from a zeroth-order bond strength argument, LaAlO3 is
expected to be stable in contact with InGaAs. HRTEM image
�Fig. 1� shows no distinct IL between InGaAs/LaAlO3/W
interfaces following a 500 °C PDA �or 440 °C, not shown�

a�Author to whom correspondence should be addressed; electronic mail:
niti.goel@intel.com

FIG. 1. �a� HRTEM image of a W/LaAlO3/n-In0.53Ga0.47As MOS capacitor
after a PDA in a nitrogen ambient at 500 °C �5 min�. As-deposited �not
shown� and annealed �at 440 or 500 °C� LaAlO3 are amorphous. �b� High
angle annular dark-field scanning TEM �HAADF-STEM� reveals an abrupt
interface between the LaAlO3 and InGaAs. �c� The cross-sectional compo-
sition information as obtained by electron energy loss spectroscopy �EELS�
and energy dispersive x-ray spectroscopy is overlayed on the HAADF-
STEM micrograph of the sample. Humps seen in the dielectric film compo-
sition are an artifact of the nonuniformity of the sample thickness in cross
section.
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in N2 ambient. MEIS verified the absence of an IL layer.11

PDA at 440 °C �device I� and 500 °C �device II� for
5 min decreased toxide, indicative of dielectric film densifica-
tion, and reduced frequency dispersion ��3% per decade�.
Figure 2 shows room temperature C-V characteristic of de-
vice II. Interestingly, the shape of the curves at frequencies
�20 kHz showed a “low-frequency” �lf� behavior where the
inversion layer charge starts to respond. Analogous behavior
has also been reported in Ge based devices.16,17 The minority
carrier �MC� response time can plausibly be shorter in
In0.53Ga0.47As due to its smaller band gap �EG�, shorter MC
lifetime ��L�, and higher intrinsic carrier density compared to
Si.18–21 Furthermore, defects and impurities �if present� can
act as sources for generation of MCs and bulk traps18 may
shorten �L.

Bidirectional sweep indicated hysteresis was 15–40 and
60–100 mV for devices I and II, respectively. The mecha-
nism for the increase in hysteresis with PDA is unknown but
contribution from charge centers due to outdiffusion of ar-
senic into the dielectric is surmised. At 1 MHz and sweep
rates ranging from 3 mV/s to 10 mV/s, the hysteresis re-
mained the same.

The upper inset of Fig. 2 compares experimental
�1 MHz, device II� and the calculated ideal C-V curve.18

Note, both the theoretical and experimental curves can have
errors in the flatband to accumulation region due to the un-
certainty in the measured profile near the interface and the
possibility of some interface trap capacitance contribution to
the measured 1 MHz curve.18 The slope of the 1 MHz curve
in depletion revealed doping of �2.8�1018 cm−3. On com-
parison with the calculated ideal flatband voltage �VFB�
�0.37 V �for toxide=10.5 nm, �InGaAs=13.3, �m=4.8 eV,
and �InGaAs=4.5 eV�, a negative effective oxide charge of
�6�1011 cm−2 was estimated. Due to the close agreement
of the two curves, conventional Terman analysis22 did not
provide credible interface trap density �Dit� values. Conse-
quently, ac-conductance method was explored.

Inset of Fig. 2 shows parallel conductance �Gp� that does
not peak up in weak inversion as a function of V and shows
a plateau in strong inversion. This suggests dominance of
generation and recombination through bulk trap levels or
through a diffusion mechanism.18 The gate-bias independent
loss also matches well with the lf behavior observed in the

C-V curves. A similar characteristic has been reported in
other low EG materials.23 However, no clear Gp peak was
seen in the depletion region close to the midgap �MG�.

C-V measurements on another device at 240 K exhibited
C-V curves �frequency dispersion �1% per decade� with
onset of lf behavior at f �2 kHz �Fig. 3�, implying reduction
of gate-bias-independent loss contribution.16,18 The contribu-
tion of both inversion layer and interface-trap capacitances to
the conductance element complicated the analysis of weak
inversion Gp peak �inset, Fig. 3�. Although no clear peak was
seen in the depletion range near MG, Dit extracted for the
depletion region �surface potential, 	s�−0.1 V� towards
flatband �	s,FB=0 V� is 1.5�1012 cm−2 eV−1, where
�p=0.1 ms after accounting for band bending fluctuations18

with 
=2. Device I provided no clear Gp peak in depletion,
though C-V stretch out suggested higher Dit than device II.
Due to competing mechanisms �conductance loss in inver-
sion and interface-state loss in depletion�, still lower tem-
peratures may be needed along with a wider frequency range
to extract interface trap parameters close to MG. Further-
more, the negative charge in the surrounding dielectric can
deplete the n-type surface around the periphery of the capaci-
tor dot plausibly supplying positive carriers for inversion.18

Device design with field isolation and different gate elec-
trode areas18 may be able to isolate this effect.

For a given toxide the extracted CET, without the quantum
mechanical correction, remained the same for the devices
with electrode areas ranging from 7.85�10−5 to 4.9
�10−4 cm2, providing a � value of 17±1 for devices I and II
�Fig. 4�a��. The J-V characteristic revealed low gate leakage
current �JL� and scalability �Figs. 4�b� and 4�c��. The JL at
�V-VFB�=1 V is 4�10−8 A/cm2 for 10 nm LaAlO3 device I
and 2�10−8 A/cm2 for 10.5 nm LaAlO3 device II. Both �
and JL in our MOSCAPs are comparable to those reported
for LaAlO3/Si.13

At high applied electric field across a 10.5-nm-thick
LaAlO3, transport is dominated by Fowler Nordheim �FN�
tunneling24 as indicated by the linear region for both forward
and reverse biases in Fig. 4�d�, suggesting conduction band
offset ��EC��2.2±0.2 eV between LaAlO3 and InGaAs.
The valence band offset ��EV��3.1±0.1 eV was extracted
by the synchrotron radiation photoelectron spectroscopy.11

Reported �EV and �EC for LaAlO3/Si are �3.2±0.1 and
1.8±0.2 eV, respectively.10 The oxide breakdown field is
�4.3 MV/cm �Fig. 4�b��.

FIG. 2. As measured room temperature multifrequency capacitance as a
function of applied gate voltage �V� for a W/LaAlO3/n-In0.53Ga0.47As MOS
capacitor with an area of 7.85�10−5 cm2, following PDA at 500 °C in an
N2 ambient. The upper inset shows a comparison between the ideal C-V
behavior and that measured at 1 MHz. The lower inset shows Gp /� �log
scale�-V, where Gp is parallel conductance and � is the measured angular
frequency.

FIG. 3. Multifrequency capacitance as a function of applied gate voltage �V�
measured at 240 K for a W/LaAlO3/n-In0.53Ga0.47As MOS capacitor with
an area of 7.85�10−5 cm2, following PDA at 500 °C in an N2 ambient. The
inset shows Gp /� �log scale�-f for gate voltages at weak inversion
�−0.5 V� and close to flatband �0,0.1 V�.
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In summary, we observed encouraging physical and
electrical characteristics such as reasonably low frequency
dispersion, low leakage current density, high dielectric con-
stant, band offsets �1 eV, and absence of an interfacial layer
in amorphous LaAlO3/ In0.53Ga0.47As MOSCAPs comparing
well with LaAlO3/Si devices. Additionally, gate-bias inde-
pendent conductance loss was noted in inversion, implying a
fast generation rate of minority carriers in n - In0.53Ga0.47As.

The authors acknowledge Intel for financial support
and Stanford Nanofabrication Facility of NNIN �supported
by the National Science Foundation under Grant No.
ECS-9731293�.
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FIG. 4. �a� Capacitive equivalent thickness as a function of physical thick-
ness �toxide� of W/LaAlO3/n-In0.53Ga0.47As MOSCAPs following 500 °C
PDA in N2 ambient as measured at 1 MHz. �b� Room temperature current
density �J� as a function of applied gate voltage �V� and toxide. �c� J-V plot
for MOSCAPs with LaAlO3 annealed at 440 °C in N2 ambient. �d� FN
tunneling plot, ln�J /Eoxide

2 � vs 1/Eoxide, for forward and reverse applied
biases.
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