

Misfit point defects at the epitaxial Lu 2 O 3 / (111) Si interface revealed by electron spin resonance

A. Stesmans, P. Somers, V. V. Afanas'ev, W. Tian, L. F. Edge, and D. G. Schlom

Citation: Applied Physics Letters **93**, 103505 (2008); doi: 10.1063/1.2974793 View online: http://dx.doi.org/10.1063/1.2974793 View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/93/10?ver=pdfcov Published by the AIP Publishing

Articles you may be interested in AsGa + antisites identified by electron spin resonance as a main interface defect system in thermal GaAs/native oxide structures Appl. Phys. Lett. **103**, 162111 (2013); 10.1063/1.4824881

Comparative electron spin resonance study of epi- Lu 2 O 3 / (111) Si and a-Lu 2 O 3 / (100) Si interfaces: Misfit point defects J. Appl. Phys. **107**, 094502 (2010); 10.1063/1.3326516

Inherent density of point defects in thermal tensile strained (100) Si/Si O 2 entities probed by electron spin resonance Appl. Phys. Lett. **89**, 152103 (2006); 10.1063/1.2339033

Influence of interface relaxation on passivation kinetics in H 2 of coordination P b defects at the (111) Si / SiO 2 interface revealed by electron spin resonance J. Appl. Phys. **92**, 1317 (2002); 10.1063/1.1482427

Hydrogen-induced thermal interface degradation in (111) Si/SiO 2 revealed by electron-spin resonance Appl. Phys. Lett. **72**, 2271 (1998); 10.1063/1.121335

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 128.84.143.26 On: Fri, 08 May 2015 18:05:36

Misfit point defects at the epitaxial $Lu_2O_3/(111)Si$ interface revealed by electron spin resonance

A. Stesmans,^{1,a)} P. Somers,¹ V. V. Afanas'ev,¹ W. Tian,² L. F. Edge,² and D. G. Schlom² ¹Department of Physics and Astronomy and INPAC, University of Leuven, 3001 Leuven, Belgium ²Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802-5005, USA

(Received 15 July 2008; accepted 1 August 2008; published online 9 September 2008)

Electron spin resonance study on heteroepitaxial Si/insulator structures obtained through the growth of epi-Lu₂O₃ films on (111)Si (~4.5 % mismatched) by reactive molecular beam epitaxy indicates the presence in the as-grown state of interfacial P_b defects (~5×10¹¹ cm⁻²) with an unpaired sp^3 Si dangling bond (DB) along the [111] sample normal, prototypical of the standard thermal (111)Si/SiO₂ interface. The defects, with density remaining unchanged to anneal in vacuum up to temperatures of T_{an} ~420 °C, directly reveal the nonperfect pseudoepitaxial nature of the interface, laid down in electrically detrimental interface traps. These are suggested to be interfacial Si DBs related to Si misfit dislocations. Alarmingly, defect passivation by standard anneal treatments in H₂ fall short. For higher T_{an} , the interface deteriorates to "standard" Si/SiO₂ properties, with an attendant appearance of EX centers indicating SiO₂ growth. Above $T_{an} \sim 1000$ °C, the interface disintegrates altogether. © 2008 American Institute of Physics. [DOI: 10.1063/1.2974793]

Metal oxides of substantially higher dielectric constant κ than SiO₂ ($\kappa \sim 3.9$) are introduced to replace the conventional amorphous (a) SiO₂ gate dielectric in Si/SiO₂-based metal-oxide-semiconductor device technology.¹ Inspired by the superb a-SiO₂/Si system, this has commonly focused on amorphous oxides as this state is expected to enable optimal local bonding adjustment to minimize the interface trap density and for other reasons such as ease and low cost in manufacturing and layer uniformity.² Among others, of crucial importance is the Si/high- κ insulator interface since its electrical properties should be device grade, close to the Si/SiO₂ standard. Typically, however, the processes used to deposit amorphous metal oxides directly on Si result in the formation of a $SiO_{2(x)}$ interlayer (IL). While amply demonstrated by numerous microstructural imaging techniques, on the atomic scale this has been evidenced by electron spin resonance (ESR) studies' through revealing the presence at the Si/high- κ interface of Si dangling-bond-type point defects termed P_b -type centers. In the case of conventional (100)Si/SiO₂, it is known that these trivalent defects are naturally incorporated at the interface as a result of the network-lattice mismatch,⁴ in areal densities⁵ of $\sim 1 \times 10^{12}$ cm⁻², for standard oxidation temperatures (800–960 °C). Their presence in Si/high- κ structures would thus demonstrate the presence of a SiO_x -type IL. Despite the superb electronic quality of the Si/SiO₂ interface thus potentially realized, the presence of a SiO_x IL in Si/high- κ structures conflicts with the requirement of minimizing the net equivalent Si oxide thickness. The $P_{b(0)}$ defects (trivalent interfacial Si dangling bonds) have been evidenced as the dominant malignant fast interface trap system.

By contrast, less effort has been devoted to the "opposite" solution, i.e., the use of epitaxial oxides with the potential of ultimate gate stack scaling able to provide atomically truly abrupt IL-free interfaces with Si, maximum κ values,

and to offer opportunities to eliminate interface states through interface engineering.^{6,7} Here, as to the interface, one may aim for atomic insight: While the atomic nature of occurring inherent interface traps (point defects) in the archetype Si/SiO₂ structure has been convincingly uncovered by the unique ESR technique in conjunction with an electristudy,⁴ with several definitely cal identified $(P_b, P_{b0}, P_{b1}, E')$, that quest stays for the epi-insulator/Si interface-a fortiori, what defects would remain at all. This is the subject of the current work providing a first ESR study on the atomic nature of inherently occurring (interfacial) point defects in an epidielectric/Si structure, i.e., epi-Lu₂O₃/(111)Si. The layered structure evolution under postgrowth annealing (PGA) is studied as well.

Among the rare earth oxides, Lu_2O_3 is an interesting alternative gate material to study the nature of the epitaxial dielectric/Si interface. Previously, both amorphous and crystalline films have been prepared on (100)Si by various techniques,⁸⁻¹⁰ exhibiting similar interesting properties, i.e., dielectric constants of ~12–13, optical band gap of ~5.6 eV, a suitable approximately symmetric band alignment with Si, with both the conduction band and valence band offsets >2 eV, and amenable thermodynamic stability in contact with Si.^{8,9} Yet, ultrathin (2–5 nm) *a*-Lu₂O₃ layers on (100)Si fabricated using atomic layer deposition (ALD) were recently found⁹ unstable against silicate formation under vacuum annealing at $T \ge 900$ °C.

Epitaxial Lu₂O₃ films (~35 nm thick) were grown by reactive molecular beam epitaxy on *p*-type 3 in. (111)Si wafers held at 700 °C using an elemental Lu source in a partial O₂ pressure of 2×10^{-6} Torr. Four-circle x-ray diffraction studies showed that this resulted in high quality films with a cubic bixbyite structure with the [111] axis along the [111]Si substrate normal and with the films predominantly (99.8%) grown in the orientation relationship of (111)[$\overline{1}10$]Lu₂O₃||(111)[$\overline{1}01$]Si (denoted as *B*-type). A rocking curve analysis indicated a high degree of structural perfection of the Lu₂O₃ film. Scanning transmission electron

This a 0003-6951/2008/93(10)/103505/3/\$23.00 cle. Reuse of AIP conte 93, 103505-10 the terms at: http://scitatio@2008 American Institute of Physics to IP:

128.84.143.26 On: Fri. 08 May 2015 18:05:36

^{a)}Electronic mail: andre.stesmans@fys.kuleuven.be.

FIG. 1. First-derivative K-band ESR spectra observed at 4.2 K on $(111) Si/Lu_2O_3$ in the as-grown state after annealing in vacuum at 625 and 900 °C. The signal at g=1.998 69 stems from a Si:P marker sample.

microscopy (STEM) demonstrated a high quality epitaxial growth, free of any detectable IL. Despite a lattice mismatch of ~4.5% between Lu₂O₃ and Si, calculated using f= $(a_{Lu_2O_3} - 2a_{Si})/a_{Lu_2O_3}$, where a is the lattice parameter, no misfit dislocations (MDs) could be detected in crosssectional views. The layered structure thermal stability was analyzed by subjecting samples to isochronal ($\sim 10 \text{ min}$) PGA at temperatures in the range of $T_{an} = 400 - 1100$ °C in vacuum ($<4 \times 10^{-6}$ Torr). Separate sets of samples were used for the various thermal steps. As an additional test related to potential ESR activation/maximization of paramagnetic defects, some samples were vacuum ultraviolet (VUV) irradiated ($h\nu$ =10 eV) in room ambient. Details about the ESR practice can be found elsewhere.^{5,11}

Figure 1 illustrates observed ESR spectra, while Fig. 2 shows the evolution of the density of observed point defects by ESR as a function of T_{an} , revealing several notable aspects: In the as-grown state, the epi-Lu₂O₃/(111)Si structure appears not to be defect free: A single anisotropic resonance signal is observed, where g mapping via magnetic field (\mathbf{B}) angular dependent measurements (**B** rotating in the (110)plane) gave the principal values $g_{\parallel} = 2.001 \ 43 \pm 0.000 \ 03$ and $g_{\perp} \sim 2.008\ 74 \pm 0.000\ 03$. This reliably allows identification of the signal as originating from the axial symmetric P_b interface defect, typically observed at the thermal (111)Si/SiO₂ interface, characterized by¹² g_{\parallel} =2.0014 and $g_{\perp} \sim 2.0088$. Pertinently, the ESR parameters match well. The inferred defect density ($[P_b] \sim 5.9 \times 10^{11} \text{ cm}^{-2}$) corresponds to one-tenth of the value ($\sim 5 \times 10^{12} \text{ cm}^{-2}$) inherent $to^{11,13}$ standard thermal (111)Si/SiO₂. This provides, on atomic scale, direct evidence of nonperfect pseudoepitaxy, although the interface thus still appears about ten times better than standard thermal $(111)Si/SiO_2$. It leaves the basic quest as to the origin of these defects. No defects from the Lu₂O₃ layer could be observed. Supplementary VUV irradiation did not reveal any Lu₂O₃-associated or additional P_b -type defects; i.e., no H passivation was involved.

However, upon annealing from $T_{\rm an} \sim 500$ °C onward, the structure becomes thermally unstable, as indicated by the steeply growing P_b density up to $T_{\rm an}$ =700 °C to reach $[P_b] \sim 6.3 \times 10^{12}$ cm⁻², a density comparable to the natural occurring density in (111)Si/SiO₂. It would indicate that the This a epi-Lu₂O₃/(111) Signification of the transformed into a truly subject b/(6f), a rough approximation of the transcendent theoretication of the

FIG. 2. Evolution of P_b (\blacksquare) and EX (o) densities as a function of isochronal PGA in vacuum. The solid curve is merely meant to guide the eye in exposing the leveling in defect generation and the lagging behind (~100 °C) of the EX production vis à vis P_{b0} . The dashed curve indicates the inherent P_h density typical of standard thermal (111)Si/SiO₂ (Ref. 11).

 $Si/SiO_{2(x)}$ -type, evidencing a formation of a SiO_x -type IL. This formation of a Si/SiO_x-type IL may be put in the light of such IL formation linked with the previously observed transformation of the LaAlO₃ network on (100)Si from the amorphous to the polycrystalline state.¹⁴ For further annealing at higher $T_{\rm an}$ up to ~1000 °C, that situation does not change as $[P_h]$ remains constant. Here, it may be added that SiO_{2(x)}-type IL formation after PGA at 400 °C (1 Torr O₂) in the case of $a-Lu_2O_3/(100)Si$ entities has been concluded from x-ray electron spectroscopy.¹⁰

The gradual growth from $T_{\rm an} \sim 420 \,^{\circ}{\rm C}$ of a Si/SiO₂-type interface is independently affirmed (see Fig. 1) by the observation, after VUV irradiation, of the EX defect, a SiO_2 -associated center.¹⁵ It starts to be observed at T_{an} \sim 550 °C and increases to the density of \sim 4 \times 10¹¹ cm⁻² at 800 °C; like P_b , its areal density remains rather unchanged up to T_{an} =950 °C. The growth temperature profile of EX appears upward shifted (retarded over ~ 100 °C) compared to P_b , indicating an additional growth (or modification) of the IL (Fig. 2). For still higher T_{an} (>1000 °C), both defect densities in tandem drop drastically, indicating the Si/SiO₂-type interface to collapse, i.e., elimination of the "pure" SiO_x component. This disruption of the interface, i.e., the breaking up of the SiO_x-IL, is possibly linked to the previously observed⁹ decomposition (metallic Lu formation) of the Lu₂O₃ layer for ALD *a*-Lu₂O₃ (2–5 nm)/Si structures.

Touching the basics of heteroepitaxy, the fundamental quest arises as to the origin and incorporation of the revealed P_b centers at the epi-Lu₂0₃/(111)Si interface, bearing testimony to nonperfect epigrowth, in fact, inherent relicts of such growth. Generally, the latter may perhaps not come as a surprise given the rather substantial mismatch in lattice parameters between the matching epifaces of the Lu₂O₃ and Si crystals. We may envision several possibilities.

First, it would seem natural to start from the involved mismatch of $\sim 4.5\%$ between Lu₂O₃ and Si in this heteroepitaxial growth. As is known, when the pseudomorphic film thickness exceeds a critical thickness d_c , the film will plastically deform (relax) through the formation of a MD network. The value of d_c may be obtained from the equation d_c ical result,¹⁶ where **b** is the dislocation Burger vector. For the current case, with $f \sim 4.5\%$ and using b = 0.38 nm typical for Si, we obtain an upper limit $d_c \sim 1.4 \text{ nm} \ll d_{\text{Lu}_2\text{O}_3} = 35 \text{ nm of}$ the grown Lu₂O₃ epifilm. Thus a MD network should have formed, although no such MD network could be directly demonstrated in cross-sectional STEM views; it might indicate that the film was not totally relaxed. Should no reconstruction occur in the MD core, given the positive lattice mismatch, this in fact would constitute row of ordered Si DBs at the (111)Si/dielectric interface all potentially appearing as P_b-like centers. Indeed, paramagnetic Si DB-type defects related to deformation induced dislocations in bulk Si have been reported by ESR observations, referred to as Si-R or D centers observed at g=2.005 after annealing at T \geq 800 °C.¹⁷ Now for $f \sim 4.5\%$, and assuming a fully relaxed Lu₂O₃ epifilm (untrue pseudomorphic), this would result in a MD network involving $\sim 3.5 \times 10^{13}$ cm⁻² defected interfacial Si atoms, that is, the same number of Si DBs if no core reconstruction would occur, ~ 60 times larger than the detected P_b 's on the as-grown sample. So, on this account the observed P_b 's could well be related with MDs; yet in line with ESR observations for bulk dislocations^{17,18} on Si, distinct bond reconstruction would have occurred. The latter is corroborated by ESR spectral properties, i.e., the absence of an explicit dipolar fine structure or excessive dipolar line broadening.¹⁹ So, within the scope of available data, the relationship of P_h 's with MDs is feasible. Importantly, in this view and assuming a truly abrupt interface, it would indicate that the P_b defect can occur at a Si/insulator interface in no strict Si/SiO₂-type environment.

A second view might envision failing epitaxy where some small irregular patches of SiO₂ IL have formed. However, this possibility is excluded since based on P_b properties in standard thermal (111)Si/SiO₂, the Si/SiO₂ patch area would amount to ~12% of the total Si/dielectric interface area—probably unacceptably unrealistic for a successful pseudomorphic epigrowth. It is further countered by failing passivation heat treatments in H₂. Here it was observed that passivation treatment in H₂ (1 atm, 1 h, 405 °C) left [P_b] unaltered with experimental accuracy. It indicates that the P_b defect system cannot be inactivated below the initial density, whose behavior would be rather unexpected for conventional (111)Si/SiO₂ areas where P_b 's can be readily passivated by such treatment to well below the ESR detection limit (a few times 10¹⁰ cm⁻²).

The third possible cause for the occurrence of point defects could be antiphase boundaries (APBs) and related threading dislocations (TDs) at APB triple junctions. As stated, such APBs are believed to be a common feature of the epitaxy of bixbyite structure films on Si, formed when growing film islands coalesce.⁶ However, as far as these APBs and related TDs are predominantly a matter of imperfection within the epitaxial bixbyite Lu₂O₃ film, these are unlikely to be the source of the observed P_b interface defect system.

Finally, assuming a high quality pseudoepitaxial growth, a fourth possibility could suggest the incorporated P_b defect system to stem from unavoidable steps at the pristine initial Si surface impairing perfect epitaxial interface registry *per se.* However, in a straightforward (ball-and-stick) picture, arguably, such step edges (one to three atom steps) at the (111)Si surface would naturally lead to 19°-type P_b vari-

ants rather than the observed regular 90° P_b centers. So, this possibility seems countered on the ESR basis. Taken together, the above considerations lead us to the suggestion that the observed P_b 's in as-grown epi-Lu₂O₃/(111)Si entities are related to MDs, considered as unavoidably incorporated to account for the 4.5% lattice mismatch.

In summary, an ESR analysis of inherently occurring point defects in an epitaxially grown high- κ /Si structure (epi-Lu₂O₃/Si) has been presented, particularly in the interfacial region. A main finding is that the epigrowth is imperfect, as revealed by the observation of P_b defects typical of the (111)Si/SiO₂ interface. A key point of interest concerns the precise origin and locality of these electrically detrimental centers, where it is concluded that these are most likely to be related to Si DBs at Si MDs introduced as a result of the ~4.5% lattice mismatch. Alarmingly, standard passivation annealing in H₂ fails, which, given the technological significance, will necessitate a more in depth investigation. The epi-Lu₂O₃/(111)Si entity appears only marginally stable, only up to $T_{\rm an} \sim 420$ °C, and its interface is seen to evolve to a fully Si/SiO₂-type at $T_{\rm an} \sim 700$ °C, as heralded by the observed (111)Si/SiO₂ natural P_b defect density. For T_{an} >1000 °C, the Si/SiO₂ nature of the IL starts to collapse, possibly linked to the disintegration of the Lu₂O₃ film altogether.

The application of ESR appears adequate to monitor the thermal (interface) evolution of layered structures, able to reveal atomic imperfections linked to heteroepitaxial growth on the very atomic scale.

- ¹International Technology Roadmap for Semiconductors 2005 (Semiconductor Industry, San Jose, CA, 2005); G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. **89**, 5243 (2001).
- ²See, e.g., J. Robertson, Eur. Phys. J.: Appl. Phys. 28, 265 (2004).
- ³A. Stesmans and V. V. Afanas'ev, J. Phys.: Condens. Matter **13**, L673 (2001); B. J. Jones and R. C. Barklie, Microelectron. Eng. **80**, 74 (2005).
- ⁴R. Helms and E. H. Poindexter, Rep. Prog. Phys. **57**, 791 (1994).
- ⁵A. Stesmans and V. V. Afanas'ev, Phys. Rev. B **57**, 10030 (1998).
- ⁶D. O. Klenov, L. F. Edge, D. Schlom, and S. Stemmer, Appl. Phys. Lett. **86**, 051901 (2005).
- ¹H. J. Osten, E. Bugiel, O. Kirfel, M. Czernohorsky, and A. Fissel, J. Cryst. Growth **278**, 18 (2005).
- ⁸K. J. Hubbard and D. G. Schlom, J. Mater. Res. **11**, 2757 (1996); L. Marsella and V. Fiorentini, Phys. Rev. B **69**, 172103 (2004).
- ⁹A. Zenkevich, Yu. Lebedinskii, S. Spiga, C. Wiemer, G. Scarel, and M. Fanciulli, Microelectron. Eng. **84**, 2263 (2007).
- ¹⁰N. Nohira, T. Shiraishi, T. Nakamura, K. Takahashi, M. Takeda, S. Ohmi,
- H. Iwai, and T. Hattori, Appl. Surf. Sci. 216, 234 (2003).
- ¹¹A. Stesmans, Phys. Rev. B 48, 2418 (1993).
- ¹²A. Stesmans and V. V. Afanas'ev, J. Appl. Phys. **83**, 2449 (1998).
- ¹³W. Futako, N. Mizuochi, and S. Yamasaki, Phys. Rev. Lett. **92**, 105505 (2004).
- ¹⁴A. Stesmans, K. Clémer, V. V. Afanas'ev, L. F. Edge, and D. G. Schlom, Appl. Phys. Lett. **89**, 112121 (2006).
- ¹⁵A. Stesmans and F. Scheerlinck, J. Appl. Phys. **75**, 1047 (1994); A. Baumer, M. Stutzmann, M. S. Brandt, F. C. K. Au, and S. T. Lee, Appl. Phys. Lett. **85**, 943 (2004); W. E. Carlos and S. M. Prokes, J. Appl. Phys. **78**, 2129 (1995).
- ¹⁶Yu. B. Bolkhovityanov, O. P. Pchelyakov, L. V. Sokolov, and S. I. Chikichev, Semiconductors **37**, 493 (2003).
- ¹⁷W. Schröter and H. Serva, Solid State Phenom. **85**, 67 (2002).
- ¹⁸E. Weber and H. Alexander, J. Phys. (Paris), Colloq. 40, C6 (1979), and references therein.
- ¹⁹K. L. Brower and T. J. Headley, Phys. Rev. B **34**, 3610 (1986); G. Van Gorp and A. Stesmans, *ibid.* **45**, 4344 (1992); A. Stesmans and B. Nouwen, *ibid.* **61**, 16068 (2000).