High-indium-content InGaAs metal-oxide-semiconductor capacitor with amorphous La Al O 3 gate dielectric

N. Goel, P. Majhi, W. Tsai, M. Warusawithana, D. G. Schlom, M. B. Santos, J. S. Harris, and Y. Nishi

Citation: Applied Physics Letters 91, 093509 (2007); doi: 10.1063/1.2776846
View online: http://dx.doi.org/10.1063/1.2776846
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/91/9?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Interfacial and electrical properties of InGaAs metal-oxide-semiconductor capacitor with TiON/TaON multilayer composite gate dielectric

Thermal stability of electrical and structural properties of GaAs-based metal-oxide-semiconductor capacitors with an amorphous La Al O 3 gate oxide
Appl. Phys. Lett. 93, 012903 (2008); 10.1063/1.2952830

Metal gate: HfO 2 metal-oxide-semiconductor structures on high-indium-content InGaAs substrate using physical vapor deposition

GaAs metal-oxide-semiconductor capacitors using atomic layer deposition of Hf O 2 gate dielectric: Fabrication and characterization

InGaAs metal-oxide-semiconductor capacitors with Hf O 2 gate dielectric grown by atomic-layer deposition
High-indium-content InGaAs metal-oxide-semiconductor capacitor with amorphous LaAlO$_3$ gate dielectric

N. Goel, a P. Majhi, and W. Tsai
Intel Corporation, Santa Clara, California 95052

M. Warusawithana and D. G. Schlom
Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802-5005

M. B. Santos
Homer L. Dodge Department of Physics and Astronomy, The University of Oklahoma, Norman, Oklahoma 73019

J. S. Harris and Y. Nishi
Center for Integrated Systems, Stanford University, Stanford, California 94305

(Received 5 June 2007; accepted 7 August 2007; published online 29 August 2007)

The structure and electrical properties of LaAlO$_3$/n-In$_{0.53}$Ga$_{0.47}$As metal-oxide-semiconductor capacitors deposited by molecular-beam epitaxy were investigated. Transmission electron microscopy revealed a sharp interface between the dielectric and InGaAs. Postdeposition annealing at 440–500 °C significantly reduced the capacitive equivalent thickness and frequency dispersion. A hysteresis of 15 mV–0.1 V, a dielectric permittivity of 17±1, and a dielectric strength of ~4.3 MV/cm were measured. Additionally, a high loss in the parallel conductance and gate-bias independence in the inversion region was observed, implying the fast generation rate of minority carriers in In$_{0.53}$Ga$_{0.47}$As. © 2007 American Institute of Physics. [DOI: 10.1063/1.2776846]

Due to limits to scaling of silicon, the use of alternative III-V compound semiconductor channels such as In$_{3.5}$Ga$_{0.7}$As and InSb in complementary metal-oxide-semiconductor (MOS) devices is becoming attractive due to their higher electron mobilities and smaller band gaps. It is surmised that integration of a high quality gate dielectric may help reduce gate leakage and improve I_{on}/I_{off} ratio in such devices. Recently In$_{0.5}$Ga$_{0.5}$As devices with various high dielectric constant (high-k) insulators showing superior electrical properties have been demonstrated. In this letter we describe the physical and electrical characteristics of thin amorphous lanthanum aluminate (LaAlO$_3$) deposited on In$_{0.53}$Ga$_{0.47}$As.

Silicon-doped In$_{0.53}$Ga$_{0.47}$As layers were grown on (001) InP substrates in a GEN II molecular-beam epitaxy (MBE) system at the University of Oklahoma. To minimize the dielectric/III-V layer interface defect density, the InGaAs samples were capped with arsenic and shipped in a vacuum container to Penn State University. The cap was desorbed in a Veeco 930 MBE system in the absence of arsenic overpressure. Amorphous LaAlO$_3$ was then deposited as described elsewhere. Reflection high-energy electron diffraction showed the LaAlO$_3$ to be amorphous. Tungsten (W) was evaporated ex situ either as deposited or postdeposition annealed (PDA) dielectric film to form the gate electrode and subsequently a MOS capacitor (MOSCAP). Evaporated indium or Ni–Ge–Au alloy formed Ohmic contact.

The structural integrity, dielectric physical thickness (t_{oxide}) and electrical characteristics in MOSCAPs were determined by cross-sectional high-resolution transmission electron microscopy (HRTEM), spectroscopic ellipsometry, capacitance-voltage (C-V), and current density–voltage (J-V) measurements. The LaAlO$_3$ film stoichiometry was established by medium energy ion scattering (MEIS) technique and Rutherford backscattering spectrometry. The absence of an interfacial layer (IL) between amorphous LaAlO$_3$/Si has been previously noted. A comprehensive thermodynamic analysis of the stability of binary oxides in contact with III-V semiconductors indicates no expected reactions between La$_2$O$_3$ or Al$_2$O$_3$ with GaAs or InAs and thus from a zeroth-order bond strength argument, LaAlO$_3$ is expected to be stable in contact with InGaAs. HRTEM image (Fig. 1) shows no distinct IL between InGaAs/LaAlO$_3$/W interfaces following a 500 °C PDA (or 440 °C, not shown)

![HRTEM image of a W/LaAlO$_3$/n-In$_{0.53}$Ga$_{0.47}$As MOS capacitor after a PDA in nitrogen ambient at 500 °C (5 min). As-deposited (not shown) and annealed (at 440 or 500 °C) LaAlO$_3$ are amorphous. (b) High angle annular dark-field scanning TEM (HAADF-STEM) reveals an abrupt interface between the LaAlO$_3$ and InGaAs. (c) The cross-sectional compositional information as obtained by electron energy loss spectroscopy (EELS) and energy dispersive x-ray spectroscopy is overlayed on the HAADF-STEM micrograph of the sample. Humps seen in the dielectric film composition are an artifact of the nonuniformity of the sample thickness in cross section.](image-url)

aAuthor to whom correspondence should be addressed; electronic mail: nit.goel@intel.com
This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:
In summary, we observed encouraging physical and electrical characteristics such as reasonably low frequency dispersion, low leakage current density, high dielectric constant, band offsets >1 eV, and absence of an interfacial layer in amorphous LaAlO$_3$/In$_{0.53}$Ga$_{0.47}$As MOSCAPs comparing well with LaAlO$_3$/Si devices. Additionally, gate-bias independent conductance loss was noted in inversion, implying a fast generation rate of minority carriers in n-In$_{0.53}$Ga$_{0.47}$As.

The authors acknowledge Intel for financial support and Stanford Nanofabrication Facility of NNIN (supported by the National Science Foundation under Grant No. ECS-9731293).

